the value of M rises sharply with H, reaching a plateau at
1.00 Nb, the saturation value expected for a S = 12 system with
a nominal g E 2, just above H = 20 kOe. There is no evidence
of hysteresis. At temperatures above TN, M rises less steeply,
and with decreasing dM/dH, so that saturation does not occur
out to H = 50 kOe, the limit of the experiment. These results
are broadly consistent with metamagnetic behavior,12 in which
the antiparallel alignment of the FM ordered radical p-stacks
is reversed by the field, so that all the chains become aligned in
parallel, producing a field-induced FM ordered material.
However, a characteristic feature for such systems is an
inflexion in the M vs. H plot, with dM/dH reaching a maximum
at the field where magnetic realignment occurs. Several non-
metallic radicals and radical ions displaying this behavior have
been reported.13,14 In this case, however, no inflexion is
observed in the M vs. H plot, nor is any maximum apparent
in the dM/dH vs. H plot (Fig. 5, right) prior to saturation, even
at T = 2 K. This result, plus the fact that ZFC-FC measure-
ments establish that AFM ordering collapses above H = 200 Oe,
is more consistent with a spin-flop transition.15–17 The profiles
of the M vs. H curves at T > TN are also in keeping with such
a process.15
Notes and references
z Crystal data at 296(2) K for [2a][OTf]: C13H5F3N2O4S5 M = 470.49,
monoclinic, a = 8.4534(4), b = 12.9782(6), c = 16.2121(7) A, b =
102.762(1), V = 1734.69(14) A3, space group P21/c (#14), Z = 4, Dc =
1.802 g cmꢁ3, m = 0.723 mmꢁ1; 300 parameters were refined using 4183
unique reflections (Rint = 0.0289) to give R = 0.0366 and Rw = 0.0721
(observed data). Crystal data at 296(2) K for 2a: C12H5N2OS4 M =
321.42, orthorhombic, a = 6.8011(7), b = 11.3785(12), c = 15.6252(16) A,
V = 1209.2(2) A3, space group P212121 (#19), Z = 4, Dc = 1.766 g cmꢁ3
,
m = 0.774 mmꢁ1; 174 parameters were refined using 3431 unique reflec-
tions (Rint = 0.0444) to give R = 0.0547 and Rw = 0.0739 (observed data).
1 (a) A. W. Cordes, R. C. Haddon and R. T. Oakley, Adv. Mater., 1994,
6, 798; (b) J. M. Rawson, A. Alberola and A. Whalley, J. Mater.
Chem., 2006, 16, 2560; (c) R. G. Hicks, Org. Biomol. Chem., 2007, 5,
1321; (d) R. G. Hicks, in Stable Radicals Fundamentals and Applied
Aspects of Odd-Electron Compounds, ed. R. G. Hicks, John Wiley &
Sons, Ltd, Wiltshire, 2010, pp. 317.
2 (a) L. Beer, J. L. Brusso, A. W. Cordes, R. C. Haddon, M. E. Itkis,
K. Kirschbaum, D. S. MacGregor, R. T. Oakley, A. A. Pinkerton
and R. W. Reed, J. Am. Chem. Soc., 2002, 124, 9498;
(b) A. W. Cordes, R. C. Haddon and R. T. Oakley, Phosphorus,
Sulfur Silicon Relat. Elem., 2004, 179, 673.
3 (a) J. L. Brusso, K. Cvrkalj, A. A. Leitch, R. T. Oakley,
R. W. Reed and C. M. Robertson, J. Am. Chem. Soc., 2006,
128, 15080; (b) A. A. Leitch, X. Yu, S. M. Winter, R. A. Secco,
P. A. Dube and R. T. Oakley, J. Am. Chem. Soc., 2009, 131, 7112.
4 (a) C. M. Robertson, A. A. Leitch, K. Cvrkalj, R. W. Reed, D. J. T.
Myles, P. A. Dube and R. T. Oakley, J. Am. Chem. Soc., 2008, 130,
8414; (b) C. M. Robertson, A. A. Leitch, K. Cvrkalj, D. J. T. Myles,
R. W. Reed, P. A. Dube and R. T. Oakley, J. Am. Chem. Soc., 2008,
130, 14791.
5 B. K. Chen, Y. J. Tsai and S. Y. Tsay, Polym. Int., 2006, 55, 930.
6 (a) N. F. Mott, Proc. Phys. Soc., London, Sect. A, 1949, 62, 416;
(b) J. Hubbard, Proc. Roy. Soc. (London), 1963, A276, 238.
7 (a) A. J. Bondi, A. J. Phys. Chem., 1964, 68, 441; (b) I. Dance,
New J. Chem., 2003, 27, 22.
8 A. A. Leitch, R. W. Reed, C. M. Robertson, J. F. Britten, X. Yu,
R. A. Secco and R. T. Oakley, J. Am. Chem. Soc., 2007, 129, 7903.
9 R. L. Carlin, Magnetochemistry, Springer-Verlag, New York, 1986.
10 G. A. Baker, G. S. Rushbrooke and H. E. Gilbert, Phys. Rev.,
1964, 135, A1272.
11 H. Murata, Y. Miyazaki, A. Inaba, A. Paduan-Filho, V. Bindilatti,
N. F. Oliveira, Z. Delen and P. M. Lahti, J. Am. Chem. Soc., 2008,
130, 186.
Fig. 6 Log plot of conductivity of 2a vs. inverse temperature.
Variable temperature 4-probe conductivity (s) measure-
12 (a) O. Kahn, Molecular Magnetism, VCH, New York, 1993; (b) A. Das,
G. M. Rosair, M. S. El Fallah, J. Ribas and S. Mitra, Inorg. Chem.,
2006, 45, 3301; (c) J. P. Sutter, A. Lang, O. Kahn, C. Paulsen,
L. Ouahab and Y. Pei, J. Magn. Magn. Mater., 1997, 171, 147.
13 (a) G. Chouteau and C. Veyret-Jeandey, J. Phys. (Paris), 1981, 42,
1441; (b) T. Kobayashi, T. Takiguchi, K. Amaya, H. Sugimoto,
A. Kajiwara, A. Harada and M. Kamachi, J. Phys. Soc. Jpn., 1993,
62, 3239; (c) T. Ishida, K. Tomioka, T. Nogami, H. Yoshikawa,
M. Yasui, F. Iwasaki, N. Takeda and M. Ishikawa, Chem. Phys.
Lett., 1995, 247, 7; (d) H. Nagashima, S. Fujita, H. Inoue and
N. Yoshioka, Cryst. Growth Des., 2004, 4, 19.
14 (a) W. Fujita, K. Takahashi and H. Kobayashi, Cryst. Growth
Des., 2011, 11, 575; (b) S. M. Winter, K. Cvrkalj, P. A. Dube,
C. M. Robertson, M. R. Probert, J. A. K. Howard and
R. T. Oakley, Chem. Commun., 2009, 7003.
15 (a) A. N. Bogdanov, A. V. Zhuravlev and U. K. Roßler, Phys. Rev.
B: Condens. Matter Mater. Phys., 2007, 75, 094425; (b) J. M. D.
Coey, Magnetism and Magnetic Materials, Cambridge University
Press, Cambridge, 2010, p. 198.
ments (Fig. 6) on 2a indicate that s(300 K) (3 ꢀ 10ꢁ5 S cmꢁ1
)
is superior to that typically found for the slipped p-stack
arrangements of 1.2 Moreover, the thermal activation energy
E
act = 0.20 eV, derived from data collected over T = 160–300 K,
is substantially lower than that (0.4–0.5 eV) typically found for
1.2 This improved performance, which probably derives from a
combination of increased intermolecular overlap afforded by the
almost direct superposition of the radicals, and a decreased onsite
Coulomb potential U, augurs well for the use of semiquinone-
bridged radicals 2 in the design of new single-component,
molecular electronic and magnetic materials.
The present results also reveal the importance of the lateral
Sꢂ ꢂ ꢂO0 contacts18 as supramolecular synthons in the develop-
ment of sheet-like networks of radicals which are resistive to
Peierls-type distortions. The incorporation of the semiquinone
unit, as found in 2, therefore represents a significant structural
as well electronic advance over pyridine-bridged radicals 1.
The availability of the carbonyl oxygen for coordination to
metals19 is also a potentially attractive feature.
16 T. Sugano, T. Goto and M. Kinoshita, Solid State Commun., 1991,
80, 1021.
17 (a) Y. Teki, K. Itoh, A. Okada, H. Yamakage, T. Kobayashi,
K. Amaya, S. Kurokawa, S. Ueno and Y. Miura, Chem. Phys.
Lett., 1997, 270, 573; (b) T. Kobayashi, M. Takiguchi, K. Amaya,
H. Sugimoto, A. Kajiwara, A. Harada and M. Kamachi, J. Phys.
Soc. Jpn., 1993, 62, 3239.
18 A. Decken, A. Mailman, J. Passmore, J. M. Rautiainen,
W. Scherer and E.-W. Scheidt, Dalton Trans., 2011, 40, 868.
19 K. E. Preuss, Dalton Trans., 2007, 2357.
We thank the Natural Sciences and Engineering Research
Council of Canada for financial support.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 4655–4657 4657