11 (a) K. Saunders, D. Hernandez, S. Pearson and J. Toner, Phys.
Rev. Lett., 2007, 98, 197801; (b) K. Saunders, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2008, 77, 061708; (c) K. Saunders,
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2009, 80,
011703.
12 R. D. Kamien and J. V. Selinger, J. Phys.: Condens. Matter, 2001,
13, R1–R22.
13 L. Li, C. D. Jones, J. Magolan and R. P. Lemieux, J. Mater.
Chem., 2007, 17, 2313–2318.
14 J. C. Roberts, N. Kapernaum, F. Giesselmann and R. P. Lemieux,
J. Am. Chem. Soc., 2008, 130, 13842–13843.
15 J. C. Roberts, N. Kapernaum, Q. Song, D. Nonnenmacher,
K. Ayub, F. Giesselmann and R. P. Lemieux, J. Am. Chem.
Soc., 2010, 132, 364–370.
16 J. W. Goodby, I. M. Saez, S. J. Cowling, V. Gortz, M. Draper,
¨
A. W. Hall, S. Sia, G. Cosquer, S.-E. Lee and E. P. Raynes, Angew.
Chem., Int. Ed., 2008, 47, 2754–2787.
17 The reduction factor R is a measure of ‘de Vries-like’ character
defined as the ratio of the tilt angle d(T) required to give the
Fig. 3 Optical tilt angles yopt versus reduced temperature T À TAC for
compounds 1 (K), 2 (J) and 3 (n). The solid lines represent the fits to
eqn (2) (1: b = 0.22, R2 = 0.947; 2: b = 0.18, R2 = 0.996; 3: b = 0.19,
R2 = 0.994). The data for 1 are from ref. 15.
observed layer spacing contraction dC(T)/dAC at
temperature T below the SmA–SmC transition temperature TAC
a given
,
assuming a conventional rigid-rod model, over the tilt angle yopt(T)
measured directly by polarized optical microscopy. According to
eqn (1), a SmA–SmC transition would approach the idealized de
Vries model as R - 0. Y. Takanishi, Y. Ouchi, H. Takezoe,
A. Fukuda, A. Mochizuki and M. Nakatsuka, Jpn. J. Appl. Phys.,
1990, 29, L984–L986.
established structure–property relationships. This new rational
approach represents a powerful means of optimizing FLC
molecular design and mixture formulation to produce chevron-
free FLC displays. A detailed study of structure–property
relationships for homologous series of liquid crystals based
on 2 and 3, including the measurements of orientational and
lamellar order parameters, is under way and will be reported in
due course.
18 M. D. Radcliffe, M. L. Brostrom, K. A. Epstein, A. G. Rappaport,
B. N. Thomas, R. Shao and N. A. Clark, Liq. Cryst., 1999, 26,
789–794.
19 M. S. Spector, P. A. Heiney, J. Naciri, B. T. Weslowski, D. B. Holt
and R. Shashidhar, Phys. Rev. E: Stat. Phys., Plasmas, Fluids,
Relat. Interdiscip. Top., 2000, 61, 1579–1584.
20 The following isometric analogues of 2-PhP8 form only a SmC
phase: 3-octyloxy-6-(4-octyloxyphenyl)pyridazine (Cr 95 SmC 117
I) and 2-nonyl-5-(4-octyloxyphenyl)-1,3,4-thiadiazole (Cr 77 SmC
90 I). (a) T. Hegmann, M. R. Meadows, M. D. Wand and
R. P. Lemieux, J. Mater. Chem., 2004, 14, 185–190;
(b) G. W. Gray, R. M. Scrowston, K. J. Toyne, D. Lacey,
A. Jackson, J. Krause, E. Poetsch, T. Geelhar, G. Weber and
We thank the Natural Sciences and Engineering Research
Council of Canada and the Deutsche Forschungsgemeinschaft
for support of this work.
Notes and references
1 (a) W. L. McMillan, Phys. Rev. A: At., Mol., Opt. Phys., 1971, 4,
1238–1246; (b) W. L. McMillan, Phys. Rev. A: At., Mol., Opt.
Phys., 1972, 6, 936–947.
A. Wachtler, WO Patent, 8,808,019, October 20, 1988.
¨
21 A. J. Goodman, S. P. Stanforth and B. Tarbit, Tetrahedron, 1999,
55, 15067–15070.
22 (a) A. Schulze and A. Giannis, Synthesis, 2006, 257–260;
(b) P. Perlmutter, W. Selajerern and F. Vounatsos, Org. Biomol.
Chem., 2004, 2, 2220–2228.
2 N. A. Clark and S. T. Lagerwall, Appl. Phys. Lett., 1980, 36, 899–901.
Principles,
3 Ferroelectric
Liquid
Crystals:
Properties
and Applications, ed. J. W. Goodby, R. Blinc, N. A. Clark,
S. T. Lagerwall, M. A. Osipov, S. A. Pikin, T. Sakurai,
K. Yoshino and B. Zeks, Gordon & Breach, Philadelphia, 1991.
4 S. T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals,
Wiley-VCH, Weinheim, 1999.
5 C. S. Hartley, N. Kapernaum, J. C. Roberts, F. Giesselmann and
R. P. Lemieux, J. Mater. Chem., 2006, 16, 2329–2337.
6 (a) R. P. Lemieux, Chem. Soc. Rev., 2007, 36, 2033–2045;
(b) R. P. Lemieux, Acc. Chem. Res., 2001, 34, 845–853.
7 T. P. Rieker, N. A. Clark, G. S. Smith, D. S. Parmar, E. B. Sirota
and C. R. Safinya, Phys. Rev. Lett., 1987, 59, 2658–2661.
8 J. P. F. Lagerwall and F. Giesselmann, ChemPhysChem, 2006, 7,
20–45.
23 J. C. Roberts, N. Kapernaum, F. Giesselmann, M. D. Wand and
R. P. Lemieux, J. Mater. Chem., 2008, 18, 5301–5306.
24 According to the generalized mean-field theory of phase transitions
(Landau theory), a b value of 0.5 is expected in the case of a pure
second-order SmA–SmC transition, whereas a b value of 0.25 is
expected in the case of a transition at the crossover (tricritical)
point from second- to first-order. R. J. Birgeneau, C. W. Garland,
A. R. Kortan, J. D. Litster, M. Meichle, B. M. Ocko,
C. Rosenblatt, L. J. Yu and J. Goodby, Phys. Rev. A: At., Mol.,
Opt. Phys., 1983, 27, 1251–1254. In the present study, there was no
detectable electroclinic effect observed above TAC under the
conditions used for optical tilt angle measurements (1 mol% of
chiral dopant, 2 V mmÀ1 applied field), and we therefore assume
that the applied electric field has no significant effect on b values
derived from the yopt(T) fits. N. Kapernaum, D. M. Walba,
E. Korblova, C. Zhu, C. Jones, Y. Shen, N. A. Clark and
F. Giesselmann, ChemPhysChem, 2009, 10, 890–892.
9 A. de Vries, J. Chem. Phys., 1979, 71, 25–31.
10 (a) M. V. Gorkunov, M. A. Osipov, J. P. F. Lagerwall and
F. Giesselmann, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.,
2007, 76, 051706; (b) M. V. Gornukov, F. Giesselmann, J. P.
F. Lagerwall, T. J. Sluckin and M. A. Osipov, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2007, 75, 060701.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 4781–4783 4783