Angewandte
Chemie
the appropriate side chains could effectively replace ezeti-
mibe (1).
In summary,we have used brush border membrane
vesicles in the first in vitro assay to evaluate small-molecule
cholesterol absorption inhibitors. In comparison with pub-
lished in vivo data of identical and closely related compounds,
consistent in vitro results were obtained. These indicate that
both ezetimibe (1) and a variety of ezetimibe glycosides are
all potent cholesterol absorption inhibitors. The salient
feature of the assay is that it permits rapid identification of
other useful ring scaffolds for the synthesis of novel choles-
terol absorption inhibitors,as exemplified by the oxazolidi-
none 16. It should thus be possible to replace tedious,
expensive,and lengthy animal experiments by convenient
evaluation in the brush border membrane vesicle assay when
investigating diverse libraries of small-molecule cholesterol
absorption inhibitors.
Scheme 3. a) 1,[16] Ac2O, NaOH, iPrOH, 97%; b) TBDMSCl, imid,
DMF, 91%; c) Al2O3 (neutral), 708C, 83%; d) 11,[24] 1,1’-(azodicarbon-
yl)dipiperidine, Bu3P, THF; e) H2, Pd(OH)2/C, EtOAc/EtOH, 21% over
two steps; f) HF·pyridine, pyridine, THF, 62%. Bn=benzyl,
DMF=N,N-dimethylformamide, imid=imidazole, TBDMS=tert-butyl-
dimethylsilyl, THF=tetrahydrofuran.
Received: April 16,2004
Keywords: cholesterol · inhibitors · medicinal chemistry ·
.
membranes
The in vitro assay also allowed us to conveniently examine
whether the b-lactam is an integral and essential pharmaco-
phore,as concluded in the early development of ezetimibe
(1),[18,25] or simply a ring scaffold to appropriately position the
required substituents. Thus,oxazolidinone 16,which closely
resembles ezetimibe (1) with respect to the positioning of the
ring substituents,[25] was synthesized in enantiomerically pure
form as outlined in Scheme 4. We were pleased to observe
that oxazolidinone 16 showed a similar activity (19%
inhibition) to ezetimibe (1; 16% inhibition) in the brush
border membrane vesicle assay. The notable activity for 16
suggests that an oxazolidinone ring scaffold substituted with
[1] Heart Disease and Stroke. Statistics—2003 Update. Available
canheart.org/downloadable/heart/
10590179711482003HDSStatsBookREV7-03.pdf.
[2] T. Sudhop,K. von Bergmann, Drugs 2002, 62,2333.
[3] E. Bruckert, Cardiology 2002, 97,59.
[4] D. J. Maron,S. Fazio,M. F. Linton, Circulation 2000, 101,207.
[5] Euroaspire II Study Group, Eur. Heart J. 2001, 22,554.
foi/label/2002/21445lbl.pdf; b) J. W. Clader, J. Med. Chem. 2004,
47,1; c) S. B. Rosenblum,T. Huynh,A. Afonso,H. R. Davis,N.
Yumibe,J. W. Clader,D. A. Burnett, J. Med. Chem. 1998, 41,
973.
[7] a) H. Thurnhofer,H. Hauser, Biochemistry 1990, 29,2142; b) S.
Compassi,M. Werder,D. Boffelli,F. E. Weber,H. Hauser,G.
Schulthess, Biochemistry 1995, 34,16473; c) S. Compassi,M.
Werder,F. E. Weber,D. Boffeli,H. Hauser, Biochemistry 1997,
36,6643; d) G. Schulthess,S. Compassi,D. Boffelli,M. Werder,
F. E. Weber,H. Hauser, J. Lipid Res. 1996, 37,2405; e) H.
Hauser,J. H. Dyer,A. Nandy,M. A. Vega,M. Werder,E.
Bieliauskaite,F. E. Weber,S. Compassi,A. Gemperli,D.
Boffelli,E. Wehrli,G. Schulthess,M. C. Phillips,
Biochemistry
1998, 37,17843; f) M. Werder,C. H. Han,E. Wehrli,D.
Bimmler,G. Schulthess,H. Hauser,
11643.
Biochemistry 2001, 40,
[8] a) S. F. Cai,R. J. Kirby,P. N. Howles,D. Y. Hui,
J. Lipid Res.
2001, 42,902; b) L. Cai,E. R. M. Eckhardt,W. Shi,Z. Zhao,M.
Nasser,W. J. S. de Villiers,D. R. van der Westhuyzen, J. Lipid
Res. 2004, 45,253; c) S. W. Altmann,H. R. Davis,X. R. Yao,M.
Laverty,D. S. Compton,L. J. Zhu,J. H. Crona,M. A. Caplen,
L. M. Hoos,G. Tetzloff,T. Priestley,D. A. Burnett,C. D. Strader,
M. P. Graziano, Biochim. Biophys. Acta 2002, 1580,77; d) E.
Levy,D. Menard,I. Suc,E. Delvin,V. Marcil,L. Brissette,L.
Thibault,M. Bendayan, J. Cell Sci. 2004, 117,327; e) D.
Jourdheuil-Rahmani,M. Charbonnier,N. Domingo,F. Luccioni,
H. Lafont,D. Lairon, Biochem. Biophys. Res. Commun. 2002,
292,390; f) B. Play,S. Salvini,Z. Haikal,M. Charbonnier,A.
Scheme 4. a) 12,[26] 13,[27] (Cl3CO)2CO, Et3N, 08C!RT, 75%, d.r. =3:2;
b) THF/H2O, reflux, 50%; c) NaOMe, MeOH; d) (Cl3CO)2CO, iPr2NEt,
DMAP, CH2Cl2, ꢀ788C!238C, 73% over two steps; e) NaBH4, EtOH;
=
f) (COCl)2, DMSO, Et3N, CH2Cl2, ꢀ788C; g) pFC6H4COCH PPh3,
CH2Cl2, ꢀ788C!238C, 82% over three steps; h) H2, Pd/C, EtOH;
i) (R)-CBS,[28] BH3·Me2S, CH2Cl2, ꢀ20!08C; j) H2, Pd/C, EtOH, 57%
over three steps. (R)-CBS=R-tetrahydro-1-methyl-3,3-diphenyl-1H,3H-
pyrrolo(1,2-C)(1,3,2)oxazaborolidine, DMAP=4-dimethyl-
aminopyridine, DMSO=dimethylsulfoxide.
Harbis,M. Roussel,D. Lairon,D. Jourdheuil-Rahmani,
Bio-
chem. Biophys. Res. Commun. 2003, 310,446.
Angew. Chem. Int. Ed. 2004, 43, 4653 –4656
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4655