7672 J. Phys. Chem. B, Vol. 108, No. 23, 2004
Lee et al.
GFPs than the C15-NTA surface. The effect of the EG group
on the NSB of GFPs was further investigated by using the SAMs
before the amide coupling of NTA-NH2 (i.e., the SAMs of C15-
COOH, EG3-COOH, and EG5-COOH). The bottom table of
Table 1 clearly shows the importance of the EG group in
reducing the NSB of GFPs: we observed little change (less
than 10) in the RU value after flowing a GFP solution and
washing with PBS on the surface presenting and EG3-COOH
and EG5-COOH (For the SPR signals, see the Supporting
Information). In particular, the SAM of EG5-COOH showed a
negligible NSB of GFPs onto the surface.
References and Notes
(1) Ulman, A. Chem. ReV. 1996, 96, 1533-1554.
(2) Mrksich, M. Curr. Opin. Chem. Biol. 2002, 6, 794-797.
(3) Lee, J. K.; Lee, K.-B.; Kim, D. J.; Choi, I. S. Langmuir 2003, 19,
8141-8143.
(4) Sullivan, T. P.; Huck, W. T. S. Eur. J. Org. Chem. 2003, 1, 17-
29.
(5) Mrksich, M. Curr. Opin. Colloid Interface Sci. 1997, 2, 83-88.
(6) MacBeath, G.; Schreiber, S. L. Science 2000, 289, 1760-1763.
(7) Flink, S.; Veggel, F. C. J. M. V.; Reinhoudt, D. N. AdV. Mater.
2000, 12, 1315-1328.
(8) Lahann, J.; Mitragotri, S.; Tran, T.-N.; Kaide, H.; Sundaram, J.;
Choi, I. S.; Hoffer, S.; Somorjai, G. A.; Langer, R. Science 2003, 299,
371-374.
(9) Kakkar, A. K. Chem. ReV. 2002, 102, 3579-3588.
(10) Choi, I. S.; Langer, R. Macromolecules 2001, 34, 5361-5363.
(11) Yoon, K. R.; Lee. K.-B.; Chi, Y. S.; Yun, W. S.; Joo, S.-W.; Choi,
I. S. AdV. Mater. 2003, 15, 2063-2066.
(12) Yoon, K. R.; Chi, Y. S.; Lee, K.-B.; Lee, J. K.; Kim, D. J.; Koh,
Y.-J.; Joo, S.-W.; Yun, W. S.; Choi, I. S. J. Mater. Chem. 2003, 13, 2910-
2914.
Conclusions
We formed three different COOH-terminated SAMs on Au-
(111) and characterized them by FT-IR spectroscopy, contact
angle goniometry, ellipsometry, and XPS. The SAM of 16-
mercaptohexadecanoic acid [HS(CH2)15COOH (C15-COOH)]
showed a well-ordered, highly crystalline structure with a lateral
packing density of 4.32 molecules/nm2 (in comparison, the
idealized SAM of alkanethiols has a lateral packing density of
4.67 molecules/nm2). The structure of the SAM became less
ordered (characterized by FT-IR spectroscopy) and the lateral
packing density decreased as the ethylene glycol (HOCH2CH2-
OH, EG) group was incorporated into the backbone of al-
kanethiols as a flexible linker. The estimated lateral packing
densities were 3.49 [for the SAM of HS(CH2)11(OCH2CH2)3-
OCH2COOH (EG3-COOH)] and 2.65 molecules/nm2 [for the
SAM of HS(CH2)11(OCH2CH2)5OCH2COOH (EG5-COOH)],
respectively. Nitrilotriacetic acid (NTA)-containing primary
amine [(1S)-N-(5-amino-1-carboxypentyl)iminodiacetic acid;
NTA-NH2] was coupled with the carboxylic acid group on
surfaces via N-hydroxysuccimide (NHS) activation of the
carboxylic acid group. The estimated coupling yields (25-30%)
were relatively low for all the three surfaces even under the
optimized conditions.
SPR studies on the binding of a His-tagged protein onto the
surfaces presenting NTA-Ni(II) groups showed that (1) there
was an optimal surface density of the NTA-Ni(II) group for a
maximum binding of proteins onto surfaces in the oriented
way: the surface prepared from EG3-COOH - having a surface
density of the NTA-Ni(II) group between those of the surfaces
prepared from C15-COOH and EG5-COOH - showed the
highest binding of His-tagged GFPs, and (2) the EG group
incorporated into the backbone of thiols had some effects in
minimizing the nonspecific binding (NSB) of proteins. We
observed a greater effect of the EG group of COOH-terminated
SAMs in minimizing the NSB of GFPs. More detailed studies
on effects of linker flexibility and functionality on the im-
mobilization of proteins and the subsequent protein-protein
(protein-ligand) interactions are currently under investigation.
(13) Mrksich, M.; Whitesides, G. M. Annu. ReV. Biophys. Biomol. Struct.
1996, 25, 55-78.
(14) Lo¨sche, M. Curr. Opin. Solid State Mater. Sci. 1997, 2, 546-
556.
(15) Turkova´, J. J. Chromatogr. B 1999, 722, 11-31.
(16) Zhu, H.; Synder, M. Curr. Opin. Chem. Biol. 2003, 7, 55-63.
(17) Hearn, M. T. W.; Acosta, D. J. Mol. Reconit. 2001, 14, 323-
369.
(18) Woodbury, C. P.; Venton, D.J. Chromatogr. B 1999, 725, 113-
137.
(19) Herrson, J. N.; Muller, W.; Paudler, M.; Riegler, H.; Ringsdorf,
H.; Suci, P. A. Langmuir 1992, 8, 1413-1416.
(20) Spinke, J.; Liley, M.; Guder, H.-J.; Angermaier, L.; Knoll, W.
Langmuir 1993, 9, 1821-1825.
(21) Pradier, C.-M.; Salmain, M.; Zheng, L.; Jaouen, G. Surf. Sci. 2002,
502-503, 193-202.
(22) Browning-Kelley, M. E.; Wadu-Mesthrige, K.; Hari, V.; Liu, G.
Y. Langmuir 1997, 13, 343-350.
(23) Delamarcje, E.; Sundarababu, G.; Biebuyck, H.; Michel, B.; Gerber,
C.; Sigrist, H.; Ringsdorf, W. H.; Xanthopoulos, N.; Mathieu, H. J. Langmuir
1996, 12, 1997-2006.
(24) Zhou, D.; Wang, X.; Birch, L.; Rayment, T.; Abell, C. Langmuir
2003, 19, 10557-10562.
(25) Frecerix, F.; Bonroy, K.; Laureyn, W.; Reekmans, G.; Campitelli,
A.; Dejaen, W.; Maes, G. Langmuir 2003, 19, 4351-4357.
(26) Sigal, G. B.; Bamdad, C.; Barberis, A.; Strominger, J.; Whitesides,
G. M. Anal. Chem. 1996, 68, 490-497.
(27) Keller, T. A.; Duschl, C.; Kro¨ger, D.; Se´vin-Landais, A.-F.; Vogel,
H.; Cervigni, S. E.; Dumy, P. Supramol. Sci. 1995, 2, 155-160.
(28) Chen, H.-M.; Luo, S.-L.; Chen, K.-T.; Lii, C.-K. J. Chromatogr.
A 1999, 852, 151-159.
(29) Rigler, P.; Ulrich, W.-P.; Hoffmann, P.; Mayer, M.; Vogel, H.
ChemPhysChem 2003, 4, 268-275.
(30) Thomson, N. H.; Smith, B. L.; Almqvist, N.; Schmitt, L.; Kashlev,
M.; Kool, E. T.; Hansma, P. K. Biophys. J. 1999, 76, 2421-2431.
(31) Schmitt, L.; Dietrich, C.; Tampe`, R. J. Am. Chem. Soc. 1994, 116,
8485-8491.
(32) Thess, A.; Hutscjernreiter, S.; Hoffmann, M.; Tampe´, R.; Barmeis-
ter, W.; Guckenberger, R. J. Biol. Chem. 2002, 277, 36321-36328.
(33) Kro¨ger, D.; Liley, M.; Schiweck, W.; Skerra, A.; Vogel, H. Biosens.
Bioelectron. 1999, 14, 155-161.
(34) Roure, O. D.; Debiemme-Chouvy, C.; Maltheˆte, J.; Silberzan, P.
Langmuir 2003, 19, 4138-4143.
(35) Schmid, E. L.; Keller, T. A.; Dienes, Z.; Vogel, H. Anal. Chem.
1997, 69, 1979-1985.
Acknowledgment. This work was supported by the R&D
Program for Fusion Strategy of Advanced Technologies. We
thank Sangwon Ko and Joon Sung Lee for the experimental
assistance and Dr. Won at Korea Basic Science Institute (KBSI)
for the XPS analysis. We are also grateful to Mi-Young Hong
and Professor Hak-Sung Kim for the SPR measurement.
(36) Hodneland, C. D.; Lee, Y.-S.; Min, D.-H.; Mrksich, M. Proc. Natl.
Acad. Sci. U.S.A. 2002, 99, 5048-5052.
(37) Wang, D.; Liu, S.; Trummer, B. J.; Deng, C.; Wang, A. Nat.
Biotechnol. 2002, 20, 275-281.
(38) Horan, N.; Yan, L.; Isobe, H.; Whitesides, G. M. Proc. Natl. Acad.
Sci. U.S.A. 1999, 96, 11782-11786.
(39) Wood, L. L.; Cheng, S.-S.; Edmiston, P. L.; Saaverdra, S. S. J.
Am. Chem. Soc. 1997, 119, 571-576.
(40) Bieri, C.; Ermst, O. P.; Heyse, S.; Hofmann, K. P.; Vogel, H. Nat.
Biotechnol. 1999, 17, 1105-1108.
Supporting Information Available: IR and XPS peak
assignments, SPR data, and tables of comparison between the
experimentally determined atomic percentages from XPS data
and the theoretical values calculated for different coverages. This
material is available free of charge via the Internet at http://
pubs.acs.org.
(41) Madoz, J.; Kuznetzov, B. A.; Medrano, F. J.; Garcia, J. L.;
Fernandez, V. M. J. Am. Chem. Soc. 1997, 119, 1043-1051.
(42) Blawas, A. S.; Reichert, W. M. Biomaterials 1998, 19, 595-609.
(43) Prime, K. L.; Whitesides, G. M. Science 1991, 252, 1164-1167.
(44) Prime, K. L.; Whitesides, G. M. J. Am. Chem. Soc. 1993, 115,
10714-10721.