2540
R. Ray, J. R. Lambert / Bioorg. Med. Chem. Lett. 21 (2011) 2537–2540
References and notes
1. Holick, M. F. Nutr. Rev. 2008, 66, S182.
2. Abe, E.; Miyaura, C.; Sakagami, H.; Takeda, M.; Konno, K.; Yamazaki, T.; Yoshiki,
S.; Suda, T. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 4990.
3. Deeb, K. K.; Trump, D. L.; Johnson, C. S. Nat. Rev. Cancer 2007, 7, 684.
4. Matsuda, S.; Jones, G. Mol. Cancer Ther. 2006, 5, 797.
5. Dalhoff, K.; Dancey, J.; Astrup, L.; Skovsgaard, T.; Hamberg, K. J.; Lofts, F. J.;
Rosmorduc, O.; Erlinger, S.; BachHansen, J.; Steward, W. P.; Skov, T.; Burcharth,
F.; Evans, T. R. Br. J. Cancer 2003, 89, 252.
6. Evans, T. R.; Colston, K. W.; Lofts, F. J.; Cunningham, D.; Anthoney, D. A.; Gogas,
H.; de Bono, J. S.; Hamberg, K. J.; Skov, T.; Mansi, J. L. Br. J. Cancer 2002, 86, 680.
7. Muindi, J. R.; Johnson, C. S.; Trump, D. L.; Christy, R.; Engler, K. L.; Fakih, M. G.
Cancer Chemother. Pharmacol. 2009, 65, 33.
8. Fakih, M. G.; Trump, D. L.; Muindi, J. R.; Black, J. D.; Bernardi, R. J.; Creaven, P. J.;
Schwartz, J.; Brattain, M. G.; Hutson, A.; French, R.; Johnson, C. S. Clin. Cancer
Res. 2007, 13, 1216.
9. Beer, T. M.; Javle, M. M.; Ryan, C. W.; Garzotto, M.; Lam, G. N.; Wong, A.;
Henner, W. D.; Johnson, C. S.; Trump, D. L. Cancer Chemother. Pharmacol. 2007,
59, 581.
10. Trump, D. L.; Potter, D. M.; Muindi, J.; Brufsky, A.; Johnson, C. S. Cancer 2006,
106, 2136.
11. Ray, R.; Ray, S.; Holick, M. F. Bioorg. Chem. 1994, 22, 276.
12. Ray, R.; Swamy, N.; MacDonald, P. N.; Ray, S.; Haussler, M. R.; Holick, M. F. J.
Biol. Chem. 1996, 271, 2012.
Figure 3. Kinetics of CYP24 message induction by 1,25(OH)2D3 and 1,25(OH)2D3-3-
BE. A498 cells were treated with 10ꢀ8 M of 1,25(OH)2D3 and 1,25(OH)2D3-3-BE or
ethanol control for 16 h, total RNA was prepared at specified times and CYP24
mRNA levels assessed by RT-PCR. b-Actin mRNA levels were determined for each
sample as control. The results are representative of two independent experiments.
13. Swamy, N.; Kounine, M.; Ray, R. Arch. Biochem. Biophys. 1997, 348, 91.
14. Swamy, N.; Xu, W.; Paz, N.; Hsieh, J.-C.; Haussler, M. R.; Maalouf, G. J.; Mohr, S.
C.; Ray, R. Biochemistry 2000, 39, 12162.
15. Mohr, S. C.; Swamy, N.; Xu, W.; Ray, R. Steroids 2001, 66, 189.
16. Chen, M. L.; Ray, S.; Swamy, N.; Holick, M. F.; Ray, R. Arch. Biochem. Biophys.
1999, 370, 34.
17. Swamy, N.; Persons, K. S.; Chen, T. C.; Ray, R. J. Cell. Biochem. 2003, 89, 909.
18. Swamy, N.; Chen, T. C.; Peleg, S.; Dhawan, P.; Christakos, S.; Stewart, L. V.;
Weigel, N. L.; Mehta, R. G.; Holick, M. F.; Ray, R. Clin. Cancer Res. 2004, 10, 8018.
19. Lambert, J. L.; Young, C. D.; Persons, K. S.; Ray, R. Biochem. Biophys. Res.
Commun. 2007, 361, 189.
20. Lange, T. S.; Singh, R. K.; Kim, K. K.; Zou, Y.; Kalkunte, S. S.; Sholler, G. L.;
Swamy, N.; Brard, L. Chem. Biol. Drug Des. 2007, 70, 302.
21. Persons, K. S.; Eddy, V. J.; Chadid, S.; Deoliveira, R.; Saha, A. K.; Ray, R.
Anticancer Res. 2010, 30, 1875.
22. Lambert, J. R.; Eddy, V. J.; Young, C. D.; Persons, K. S.; Sarkar, S.; Kelly, J. A.;
Genova, E.; Lucia, M. S.; Faller, D. V.; Faller, R. Cancer Prev. Res. (Phila) 2010, 3,
1596.
23. Ray, R.; Holick, S. A.; Holick, M. F. J. Chem. Soc., Chem. Commun. 1985, 11, 702.
24. Yamada, S.; Suzuki, t.; Takayama, H.; Miyamoto, K.; Matsunaga, I.; Nawata, Y. J.
Org. Chem. 1983, 48, 3483.
Taken together, results of Figures
2 and 3 suggest that
1,25(OH)2D3-3-BE is less effective in inducing CYP24 gene
expression than an equivalent amount of 1,25(OH)2D3. CYP24 is a
catabolic enzyme that initiates the degradation of 1,25(OH)2D3.
Therefore, reduced and delayed expression of CYP24 gene implies
decreased catabolism of 1,25(OH)2D3-3-BE, as predicted by our
hypothesis.
We reported earlier that 1,25(OH)2D3-3-BE changes the confor-
mation of VDR differently from 1,25(OH)2D3 as reflected in the en-
hanced stabilization of VDR-hOCVDRE (human osteocalcin vitamin
D response element) complex in COS-1 cells and promotion of a
longer stimulation of CYP24 mRNA expression in keratinocytes
compared with 1,25(OH)2D3.16 Furthermore, recently we reported
that compounds similar to 1,25(OH)2D3-3-BE with alkylating bro-
moacetate group at 1- and 11-positions of 1,25(OH)2D3 specifically
labeled VDR-LBD, yet their antiproliferative activity in keratino-
cytes was similar to that of 1,25(OH)2D3.27 Therefore, considering
all the information we ascribe enhanced antiproliferative activity
of 1,25(OH)2D3-3-BE to a combination of its increased half-life
25. Ray, R.; Vicchio, D.; Yergey, A.; Holick, M. F. Steroids 1992, 57, 142.
26. Omdahl, J. L.; Swamy, N.; Serda, R.; Annalora, A.; Berne, M.; Ray, R. J. Steroid
Biochem. Mol. Biol. 2004, 89–90, 159.
27. Kaya, T.; Swamy, N.; Persons, K. S.; Ray, S.; Ray, R. Bioorg. Chem. 2009, 37, 57.
28. Bouillon, R.; Carmeliet, G.; Verlinden, L.; van Etten, E.; Verstuyf, A. Luderer,
H.F.; Lieben, L.; Mathieu, C.; Demay, M. Endocr. Rev. 2008, 6, 726.
Notes
(by covalent labeling of VDR-LBD) and
VDR-conformation upon binding (Fig. 1).
a unique change in
Several non-genomic pathways for the action of 1,25(OH)2D3
and its analogs have also been reported.28 We have observed that
PI3K/Akt non-genomic pathway is involved in the activity of
1,25(OH)2D3-3-BE in kidney cancer cells.22 Therefore, mechanism
of action of 1,25(OH)2D3-3-BE may involve a combination of geno-
mic and non-genomic pathways.
Synthesis: (i)
A mixture of (C) (760 mg) and SeO2 (192 mg) in 15 ml of
anhydrous CH2Cl2 was refluxed under argon for 30 min followed by cooling to
room temperature and addition of a solution of N-methylmorpholine-N-oxide
(850 mg) in 15 ml of anhydrous CH2Cl2. The mixture was refluxed for an
additional 60 min. After usual workup and purification trans-1
dihydroxyvitamin D3-3b-TBDMS ether (D) was obtained in 95% yield.
(ii) A toluene (10 ml) solution of D (80 mg), anthracene (10 mg), Et3N (40
a,25-
l
l) in
a quartz test tube was irradiated from a Hanovia medium pressure mercury arc
In conclusion, we report an efficient synthesis of
1,25(OH)2D3-3-BE, a potential therapeutic agent for cancer. In
addition, we provide data from cellular studies to support our
hypothesis about its intrinsic mechanism of action.
lamp for 75 min. After preparative TLC purification 1a,25-dihydroxyvitamin
D3-3-TBDMS ether (E) was obtained in 67% yield.
Cellular studies: (i) Induction of 1a,25-dihydroxyvitamin D3-24hydroxylase
(CYP24) gene expression by 1,25(OH)2D3 and 1,25(OH)2D3-3-BE (dose–
response): A498 kidney cancer cells (ATCC, Manasas, VA) were treated with
10ꢀ6 M of 1,25(OH)2D3, 1,25(OH)2D3-3-BE or ethanol (vehicle control) for 24 h.
Total RNA was prepared and subjected to reverse transcription using Moloney
murine leukemia virus (MMLV) reverse transcriptase and random hexamers
under standard conditions. Following cDNA synthesis, PCR was performed
using gene specific primers to the vitamin D target gene, CYP24 and b-actin
(control). The products were analyzed on 1% agarose gels.
(ii) Induction of CYP24 gene expression by 1,25(OH)2D3-3-BE (kinetics): In this
experiment, A498 cells were treated with 10ꢀ8 M of 1,25(OH)2D3-3-BE and
1,25(OH)2D3 and RNA prepared over the course of 16 h for the analysis of
CYP24 mRNA levels by RT-PCR.
Acknowledgments
This work was supported by National Cancer Institute Grant CA
127629, Department of Defense Grant PC 051136, National Cancer
Institute CA126317 (sub-contract) and Community Technology
Fund grant, Boston University to R.R., and American Cancer Society
Research Scholar Grant RSG-04-170-01-CNE to J.R.L.