678
A. Tuchscherer et al. / Inorganic Chemistry Communications 14 (2011) 676–678
We have developed a straightforward and efficient way to
generate gold nanoparticles by thermolysis of a phosphane gold
ethylene glycol carboxylate in organic solvents (toluene, para-xylene
and mesitylene) at low temperatures. The advantage of this
preparation methodology is that no reducing and stabilizing agents
have to be added. The generated NP are of narrow size distribution
and are stabilized by a small organic/inorganic matrix.
Actually, we are using the methodology described above for the
formation and stabilization of various metal and metal oxide NP from
further transition metal and main-group element carboxylates.
Acknowledgments
We gratefully acknowledge the Deutsche Forschungsgemeinschaft
(IRTG, Materials and Concepts for Advanced Interconnects, GRK 1215)
and the Fonds der Chemischen Industrie for generous financial support.
Appendix A. Supplementary material
CCDC-793568 contains the supplementary crystallographic data for
this paper. These data can be obtained free of charge from the Cambridge
References
[1] M.-C. Daniel, D. Astruc, Chem. Rev. 104 (2004) 293.
[2] D. Compton, L. Cornish, E. van der Lingen, Gold Bull. 36 (2003) 10.
[3] S. Link, A. Beeby, S.F. Gerald, M. A-El-Sayed, T.G. Schaaff, R.L. Whetten, J. Phys.
Chem. B 106 (2002) 3410.
[4] D.L. Feldheim, C.D. Keating, Chem. Soc. Rev. 27 (1998) 1.
[5] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Chem. Rev. 108
(2008) 2064.
[6] M. Haruta, M. Daté, Appl. Catal. A Gen 222 (2001) 427.
[7] S.-A. Dong, S.-P. Zhou, Mater. Sci. Eng. B 140 (2007) 153.
[8] H. Wohltjen, A.W. Snow, Anal. Chem. 70 (1998) 2856.
[9] A.G. Kanaras, F.S. Kamounah, K. Schaumburg, C.J. Kiely, M. Brust, Chem. Commun.
(2002) 2249.
[10] O.D. Velev, S. Gupta, Adv. Mater. 21 (2009) 1897.
[11] E. Gaffet, M. Tachikart, O.E. Kedim, R. Rahouadj, Mater. Charact. 36 (1996) 185.
[12] G.M. Whitesides, J.C. Love, Sci. Am. (2001) 39.
[13] S. Eustis, A. El-Sayed, Chem. Soc. Rev. 35 (2006) 209.
[14] C. Fu, H. Zhou, D. Xie, L. Sun, Y.Yin, J. Chen,Y. Kuang, ColloidPolym. Sci. 288(2010) 1097.
[15] E.I. Isaeva, M.Y. Kim, V.V. Gorbunova, T.B. Boitsova, Russ. J. Gen. Chem. 77 (2007) 812.
[16] J. Turkevich, P.C. Stevenson, J. Hillier, Discuss. Faraday Soc. 11 (1951) 55.
[17] P. Pengo, S. Polizzi, M. Battagliarin, L. Pasquato, P. Scrimin, J. Mater. Chem. 13
(2003) 2471.
[18] G. Schmid, B. Corain, Eur. J. Inorg. Chem. (2003) 3081.
[19] V. Delmas, S. Grugeon, R. Herrera Urbina, P.-Y. Silvert, K. Tekaia-Elhsissen,
Nanostruct. Mater. 11 (1999) 1277.
[20] C.-H. Wang, C.-J. Liu, C.-L. Wang, T.-E. Hua, J.M. Obliosca, K.H. Lee, Y. Hwu, C.-S. Yang,
R.-S. Liu, H.-M. Lin, J.-H. Je, G. Margaritondo, J. Phys. D Appl. Phys. 41 (2008) 1.
[21] J. Zhou, J. Ralston, R. Sedev, D.A. Beattie, J. Colloid Interface Sci. 331 (2009) 251.
[22] E. Boisselier, A.K. Diallo, L. Salmon, C. Ornelas, J. Ruiz, D. Astruc, J. Am. Chem. Soc.
132 (2010) 2729.
[23] Synthesis of [(Ph3P)AuO2CCH2(OCH2CH2)2OCH3] (3). Triphenylphosphine gold(I)
chloride (1) (0.32 g, 0.64 mmol) dissolved in toluene (10 mL) was treated with
silver(I)-2-[2-(2-methoxyethoxy)-ethoxy]acetate (2). The slurry was stirred for
12 hrs at 25 °C in the absence of light, followed by a filtration through a pad of
Celite. Afterwards, the remaining solid was washed twice with toluene (15 mL).
Evaporation of all volatiles from the eluate in oil-pump vacuum gave colorless 3
(0.38 g, 94%). Mp 133 °C. Elemental analysis: Calcd. for C25H28AuO5P (636.43) C,
47.18%, H, 4.43%, Found: C, 47.38%, H, 4.52%. 1H NMR (CDCl3) 3.36 (s, 3H), 3.54 (m,
2H), 3.65 (m, 2H), 3.70 (m, 2H), 3.78 (m, 2H), 4.17 (s, 2H), 7.42–7.54 (m, 15H).13
C
1
NMR (CDCl3) 58.94, 70.31, 70.40, 70.65, 71.30, 71.88, 128.45 (d, JCP =64.5 Hz),
4
129.1 (d, JCP =11.9 Hz), 131.90 (d, JCP =2.3 Hz), 134.1 (d, JCP =13.6 Hz). IR:
Fig. 4. TEM images and size distribution of Au NP derived from 3 generated in boiling
mesitylene (3.9 (+/-1) nm) (a), para-xylene (4.0 (+/-1) nm) (b), and toluene (4.0
(+/-1) nm) (c).
υCO=1599 (m), υPC =1434 (m), υCOC =1119 (m).
[24] M. Steffan, A. Jakob, P. Claus, H. Lang, Catal. Commun. 10 (2009) 437.
[25] Crystal data for [(Ph3P)AuO2CCH2(OCH2CH2)2OCH3] (3): C25H28AuO5P,
M=636.41
triclinic, P1
g
⋅mol−1
,
crystal dimensions 0.10×0.05×0.01 mm, T=100 K,
fragments. From 1H NMR and 31P NMR studies we conclude that the
stabilizing matrix of the Au NP consists of ethylene glycol fragments and
PPh3. In contrast to common bottom-up synthesis procedures, neither the
addition of a stabilizing (e. g. polymers, co-polymers or dendrimers) nor a
reducing reagent is necessary [27,28], which qualifies 3 as an efficient and
simple precursor for the generation of metal NP.
̄
β=74.972(7), γ=78.687(7) °, V=1194.60(17) Å3, Z=2, ρcalcd =1.769 g cm−3
,
μ=12.484 mm−1, θ range=4.36–62.00 °, reflections collected: 6954, indepen-
dent: 3703 (Rint =0.0568), R1 =0.0621, wR2 =0.1647 [IN2σ(I)].
[26] S.F. Jahn, T. Blaudeck, A. Jakob, P. Ecorchard, T. Rüffer, H. Lang, R.R. Baumann,
Chem. Mater. 22 (2010) 3067.
[27] S.T. Hussain, M.I.M. Mazhar, J. Nanopart. Res. 11 (2009) 1383.
[28] D. Philip, Spectrochim. Acta A 71 (2008) 80.