Table 1 Catalytic data of cyclopropanation reactions of styrene with
EDA
Notes and references
1 (a) B. H. Northrop, Y.-R. Zheng, K.-W. Chi and P. J. Stang,
Acc. Chem. Res., 2009, 42, 1554–1563; (b) J.-R. Li and H.-C. Zhou,
Nat. Chem., 2010, 2, 893–898; (c) Y. Ke, D. J. Collins and
H.-C. Zhou, Inorg. Chem., 2005, 44, 4154–4156; (d) M. D.
Pluth, R. G. Bergman and K. N. Raymond, Acc. Chem. Res.,
2009, 42, 1650–1659; (e) M. J. Prakash and M. S. Lah,
Chem. Commun., 2009, 3326–3341; (f) J.-R. Li, R. J. Kuppler
and H.-C. Zhou, Chem. Soc. Rev., 2009, 38, 1477–1504;
(g) M. Yoshizawa, M. Tamura and M. Fujita, Science, 2006,
312, 251–254.
2 (a) D. Zhao, D. Yuan, R. Krishna, J. M. van Baten and
H.-C. Zhou, Chem. Commun., 2010, 46, 7352–7354;
(b) K. Ikemoto, Y. Inokuma and M. Fujita, Angew. Chem., Int.
Ed., 2010, 49, 5750–5752; (c) S. A. Krovi, D. Smith and
S. T. Nguyen, Chem. Commun., 2010, 46, 5277–5279; (d) J.-R.
Li, A. A. Yakovenko, W. Lu, D. J. Timmons, W. Zhuang,
D. Yuan and H.-C. Zhou, J. Am. Chem. Soc., 2010, 132,
17599–17610; (e) M. J. Prakash, M. Oh, X. Liu, K. N. Han,
G. H. Seong and M. S. Lah, Chem. Commun., 2010, 46,
2049–2051; (f) D. Zhao, S. Tan, D. Yuan, W. Lu,
Y. H. Rezenom, H. Jiang, L.-Q. Wang and H.-C. Zhou, Adv.
Mater., 2011, 23, 90–93.
Entry
Catalyst (amounta)
Run
Yield (%)b
Trans/cis
1
2
3
4
5
6
7
MOP 4c (1 mol%)d
MOP 4c (1 mol%)d
Cu–H (5 mol%)
Cu–USY (5 mol%)
Cu–MCM-41(5 mol%)
[Cu3(BTC)2] (5 mol%)
MOP 1c (1 mol%)
1
2
1
1
1
1
1
89
81
74
32
2.7e
2.7e
2.0
1.9
2.0
60
98
2.3
n.a.f
n.a.f
a
b
Catalyst loading. Yield of cyclopropane, based on EDA. Preactived
c
(methanol exchange 3 times, dynamic vacuum at 120 1C overnight).
d
Reaction condition: catalyst/EDA/styrene = 1/100/200, CH2Cl2, 25 1C,
10 h addition of EDA and then stirring for 10 h. Determined by
e
f
HPLC. Catalyst decomposed (color changed from blue to brown).
3 (a) J.-R. Li, D. J. Timmons and H.-C. Zhou, J. Am. Chem. Soc., 2009,
131, 6368–6369; (b) H. Abourahma, A. W. Coleman, B. Moulton,
B. Rather, P. Shahgaldian and M. J. Zaworotko, Chem. Commun.,
2001, 2380–2381; (c) J.-R. Li and H.-C. Zhou, Angew. Chem.,
Int. Ed., 2009, 48, 8465–8468; (d) D. J. Tranchemontagne, Z. Ni,
M. O’Keeffe and O. M. Yaghi, Angew. Chem., Int. Ed., 2008, 47,
5136–5147.
dicopper paddlewheel units decompose within 30 min upon
addition of EDA, presumably due to the aggregation of MOP 1
in dichloromethane, which blocked most of the copper sites
leading to slow EDA consumption. Excessive EDA decomposes
dicopper paddlewheel in all of our experiments.
4 H. Furukawa, J. Kim, K. E. Plass and O. M. Yaghi, J. Am. Chem.
Soc., 2006, 128, 8398–8399.
Besides the reusability experiment (entry 2, Table 1), absorp-
tion spectra also demonstrate the stability of MOP 4 in
dichloromethane solution during catalysis. The absorption
band around 700 nm is characteristic of the dicopper paddle-
wheel structural unit.12 After the reaction, the 700 nm absorption
band barely changes, indicating the intactness of the dicopper
paddlewheel units (Fig. S11, ESIw).
In summary, a super-paddlewheel MOP containing four
hydroxyl groups has been synthesized and characterized. Surface
functionalization via condensation reactions between the hydroxyl
groups and liner alkyl anhydrides has proven to be an efficient
strategy to tune the solubility of a MOP. MOP 4 has been
surface-functionalized using such a strategy and becomes
soluble in non-coordinating solvents. It has subsequently been
utilized as a highly efficient homogeneous Lewis-acid catalyst
for cyclopropanation reactions.
5 (a) W. Zhuang, S. Ma, X.-S. Wang, D. Yuan, J.-R. Li, D. Zhao
and H.-C. Zhou, Chem. Commun., 2010, 46, 5223–5225;
(b) H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B.
Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O’Keeffe,
J. Kim and O. M. Yaghi, Science, 2010, 329, 424–428;
(c) D. Yuan, D. Zhao, D. J. Timmons and H.-C. Zhou,
¨
Chem. Sci., 2011, 2, 103–106; (d) O. K. Farha, A. Ozgur
¨
Yazaydın, I. Eryazici, C. D. Malliakas, B. G. Hauser,
M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr and J. T. Hupp,
Nat. Chem., 2010, 2, 944–948; (e) D. Zhao, D. Yuan, D. Sun and
H.-C. Zhou, J. Am. Chem. Soc., 2009, 131, 9186–9188;
(f) D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O’Keeffe
and O. M. Yaghi, Chem. Soc. Rev., 2009, 38, 1257–1283;
(g) D. Yuan, D. Zhao, D. Sun and H.-C. Zhou, Angew. Chem.,
Int. Ed., 2010, 49, 5357–5361.
6 R. Ohta, I. Gunjishima, K. Shinozaki, T. Hatanaka, A. Okamoto
and K. Nishikawa, Chem. Commun., 2010, 46, 5259–5261.
7 (a) D. Farrusseng, S. Aguado and C. Pinel, Angew. Chem., Int. Ed.,
2009, 48, 7502–7513; (b) C.-D. Wu and W. Lin, Angew. Chem., Int.
Ed., 2007, 46, 1075–1078; (c) J. Lee, O. K. Farha, J. Roberts,
K. A. Scheidt, S. T. Nguyen and J. T. Hupp, Chem. Soc. Rev.,
2009, 38, 1450–1459; (d) L. Ma, C. Abney and W. Lin, Chem. Soc.
Rev., 2009, 38, 1248–1256; (e) K. K. Tanabe and S. M. Cohen,
Inorg. Chem., 2010, 49, 6766–6774; (f) A. Corma, M. Iglesias,
´ ´
F. Llabres i Xamena and F. Sanchez, Chem.–Eur. J., 2010, 16,
9693–9693.
8 M. Tonigold, J. Hitzbleck, S. Bahnmuller, G. Langstein and
D. Volkmer, Dalton Trans., 2009, 1363–1371.
9 S. M. Cohen, Chem. Sci., 2010, 1, 32–36.
10 Z. Ni, A. Yassar, T. Antoun and O. M. Yaghi, J. Am. Chem. Soc.,
2005, 127, 12752–12753.
11 M. J. Alcon, A. Corma, M. Iglesias and F. Sanchez, J. Organomet.
´ ´
Chem., 2002, 655, 134–145.
12 R. W. Larsen, G. J. McManus, J. J. Perry, E. Rivera-Otero and
M. J. Zaworotko, Inorg. Chem., 2007, 46, 5904–5910.
The US Department of Energy (DOE DE-SC0001015,
DE-FC36-07GO17033, and DE-AR0000073), the National
Science Foundation (NSF CBET-0930079 and CHE-0911207),
and the Welch Foundation (A-1725) supported this work.
The microcrystal diffraction of MOP 4 was carried out with
the assistance of Yu-Sheng Chen at the Advanced Photon
Source on beamline 15ID-B at ChemMatCARS Sector 15,
which is principally supported by the NSF/DOE under
grant number CHE-0535644. Use of the Advanced Photon
Source was supported by the U. S. DOE, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357.
c
4970 Chem. Commun., 2011, 47, 4968–4970
This journal is The Royal Society of Chemistry 2011