H. Li, M. Yang, Y. Qi, J. Xue
FULL PAPER
7802; h) Z. Q. Fu, M. Wang, Y. Dong, J. Liu, Q. Liu, J. Org.
Chem. 2009, 74, 6105–6110; i) J. McNulty, J. J. Nair, M. Sliwin-
ski, A. J. Robertson, Tetrahedron Lett. 2009, 50, 2342–2346.
a) C. E. Song, W. H. Shim, E. J. Roh, J. H. Choi, Chem. Com-
mun. 2000, 1695–1696; b) A. Fürstner, D. Voigtländer, W.
Schrader, D. Giebel, M. T. Reetz, Org. Lett. 2001, 3, 417–420;
c) S. J. Nara, J. R. Harjani, M. M. Salunkhe, J. Org. Chem.
2001, 66, 8616–8620; d) J. Ross, J. L. Xiao, Green Chem. 2002,
4, 129; e) S. Gmouh, H. Yang, M. Vaultier, Org. Lett. 2003, 5,
2219–2222; f) E. Fillion, D. Fishlock, A. Wilsily, J. M. Goll, J.
Org. Chem. 2005, 70, 1316–1327; g) D. O. Jang, K. S. Moon,
D. H. Cho, J. G. Kim, Tetrahedron Lett. 2006, 47, 6063–6066;
h) G. Sartori, R. Maggi, Chem. Rev. 2006, 106, 1077–1104; i)
A. Dzudza, T. J. Marks, J. Org. Chem. 2008, 73, 4004–4016.
a) J. W. Labadie, J. K. Stille, J. Am. Chem. Soc. 1983, 105,
6129–6137; b) Y. Hatanaka, S. Fukushima, T. Hiyama, Tetra-
hedron 1992, 48, 2113–2126; c) L. J. Goossen, K. Ghosh, An-
gew. Chem. Int. Ed. 2001, 40, 3458–3460; d) Y. C. Huang, K. K.
Majumdar, C.-H. Cheng, J. Org. Chem. 2002, 67, 1682–1684;
e) A. Zapf, Angew. Chem. Int. Ed. 2003, 42, 5394–5399; f) D.
Wang, Z. Zhang, Org. Lett. 2003, 5, 4645–4648; g) H. Tatamid-
ani, K. Yokota, F. Kakiuchi, N. Chatani, J. Org. Chem. 2004,
69, 5615–5621; h) Y. Zhang, T. Rovis, J. Am. Chem. Soc. 2004,
126, 15964–15965; i) G. F. Silbestri, R. Bogel-Masson, M. T.
Lockhart, A. B. Chopa, J. Organomet. Chem. 2006, 691, 1520–
1524.
a) R. F. Heck, J. Am. Chem. Soc. 1968, 90, 5546–5548; b) A.
Schoenberg, R. F. Heck, J. Org. Chem. 1974, 39, 3327–3331.
a) N. A. Bumagin, A. B. Ponomaryov, I. P. Beletskaya, Tetrahe-
dron Lett. 1985, 26, 4819–4822; b) T. Ohe, K. Ohe, S. Uemura,
N. Sugita, J. Organomet. Chem. 1988, 344, C5–C7; c) J. J. Bru-
net, R. Chauvin, Chem. Soc. Rev. 1995, 24, 89–95; d) T. Ishi-
yama, H. Kizaki, T. Hayashi, A. Suzuki, N. Miyaura, J. Org.
Chem. 1998, 63, 4726–4731; e) S. Couve-Bonnaire, J.-F. Carp-
entier, A. Mortreux, Y. Castanet, Tetrahedron Lett. 2001, 42,
3689–3691; f) M. B. Andrus, Y. Ma, Y. Zang, C. Song, Tetrahe-
dron Lett. 2002, 43, 9137–9140; g) S. Couve-Bonnaire, J.-F.
Carpentier, A. Mortreux, Y. Castanet, Tetrahedron 2003, 59,
2793–2799; h) E. Maerten, F. Hassouna, S. Couve-Bonnaire,
A. Mortreux, J. F. Carpentier, Y. Castanet, Synlett 2003, 1874–
1876; i) M. J. Dai, B. Liang, C. H. Wang, Z. J. You, J. Xiang,
G. B. Dong, J. H. Chen, Z. Yang, Adv. Synth. Catal. 2004, 346,
1669–1673; j) P. Prediger, A. V. Moro, C. W. Nogueira, L. Sav-
egnago, P. H. Menezes, J. B. T. Rocha, G. Zeni, J. Org. Chem.
2006, 71, 3786–3792; k) S. Zheng, L. Xu, C. Xia, Appl. Or-
ganomet. Chem. 2007, 21, 772–776; l) L. Bartali, A. Guarna, P.
Larini, E. G. Occhiato, Eur. J. Org. Chem. 2007, 2152–2163; m)
B. M. O’Keefe, N. Simmons, S. F. Martin, Org. Lett. 2008, 10,
5301–5304; n) H. Neumann, A. Brennfuehrer, M. Beller, Chem.
Eur. J. 2008, 14, 3645–3652; o) M. Z. Cai, G. M. Zheng, L. F.
Zha, J. E. Peng, J. Org. Chem. 2009, 74, 1585–1591.
cluding CH3 and CH3O, electron-withdrawing groups, in-
cluding CH3OCO, Br, and Cl, and even the strongly elec-
tron-withdrawing substituent NO2, are tolerated. (3) The
reactions demonstrated high selectivity (up to 100% for the
carbonylative Suzuki reaction of 4-iodoanisole with phen-
ylboronic acid) for the catalytic system, and the important
pharmaceutical intermediate 4-vinylphenyl 2-thienyl ketone
could be prepared selectively in good yield. (4) This ligand-
free Pd2(dba)3-catalyzed carbonylative Suzuki coupling re-
action provided high TONs up to 1700. (5) The catalyst can
also be recycled. Further efforts to extend the application
of this system in other coupling transformations are un-
derway in our laboratory.
[2]
[3]
Experimental Section
Typical Experimental Procedure for the Carbonylative Suzuki Cou-
pling Reaction: Aryl iodide 1a (47.8 mg, 0.2 mmol), aryl boronic
acid 2a (24.9 mg, 0.2 mmol), Pd2(dba)3 (1.9 mg, 1 mol-%), and
K2CO3 (83.8 mg, 3 equiv.) were mixed in anhydrous anisole (2 mL)
under balloon pressure of CO, and the reaction mixture was stirred
at 100 °C for 20 h. The reaction mixture was then filtered through
Celite, which was washed three times with ethyl acetate and ana-
lyzed by gas chromatography (GC) with biphenyl as the internal
standard. The crude product was purified by column chromatog-
raphy on silica gel (hexanes/EtOAc) to give desired product 3a. 1H
[4]
[5]
3
NMR (400 MHz, CDCl3):[15] δ = 7.82–7.80 (d, JH,H = 7.2 Hz, 2
H, Hphenyl), 7.75–7.73 (d, 3JH,H = 4.2 Hz, 2 H, 4-MeOC6H4), 7.56–
3
7.52 (t, JH,H = 7.2 Hz, 1 H, Hphenyl), 7.46–7.43 (t, 3JH,H = 7.4 Hz,
2 H, Hphenyl), 6.95–6.93 (d, 3JH,H = 7.6 Hz, 2 H, 4-MeOC6H4), 3.85
(s, 3 H, OCH3) ppm.
Typical Experimental Procedure for the Recycling Study of the Cata-
lyst: Aryl iodide 1a (238.8 mg, 1 mmol), aryl boronic acid 2a
(124.4 mg, 1 mmol), Pd2(dba)3 (9.5 mg, 1 mol-%), and K2CO3
(418.8 mg, 3 equiv.) were mixed in anhydrous anisole (10 mL) un-
der balloon pressure of CO, and the reaction mixture was stirred
at 100 °C for 20 h. After each run, the catalyst was recovered by
filtration through Celite. The catalyst was then washed with ethyl
acetate (3ϫ10 mL) and then dried under vacuum. The obtained
catalyst was used for the next run.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures and characterization for all products.
[6]
[7]
P. J. Tambade, Y. P. Patil, A. G. Panda, B. M. Bhanage, Eur. J.
Org. Chem. 2009, 3022–3025.
a) Z. S. Wu, M. Yang, H. L. Li, Y. X. Qi, Synthesis 2008, 1415–
1419; b) H. L. Li, Z. S. Wu, M. Yang, Y. X. Qi, Catal. Lett.
2010, 137, 69–73.
Acknowledgments
[8]
[9]
J. B. Johnson, T. Rovis, Angew. Chem. Int. Ed. 2008, 47, 840–
The authors thank the Natural Science Foundation of Gansu Prov-
ince (3ZS071-A25-009) for financial support.
871.
a) P. Pickup, J. Mater. Chem. 1999, 9, 1641–1653; b) C. R. Rice,
S. Worl, J. C. Jeffrey, R. L. Paul, M. D. Ward, J. Chem. Soc.,
Dalton Trans. 2001, 550–559.
[10]
[11]
a) M. Ishikura, M. Kamada, M. Terashima, Synthesis 1984,
936–938; b) W. J. Thompson, J. H. Jones, P. A. Lyle, J. E. Thies,
J. Org. Chem. 1988, 53, 2052–2055.
a) U. Mitschke, P. Bäuerle, J. Mater. Chem. 2000, 10, 1471–
1507; b) C. S. Wang, G. Y. Jung, Y. L. Hua, C. Pearson, M. R.
Bryce, M. C. Petty, A. S. Batsanov, A. E. Goeta, J. A. K. How-
ard, Chem. Mater. 2001, 13, 1167–1173; c) G. M. Chapman,
S. P. Stanforth, B. Tarbit, M. D. Watson, J. Chem. Soc. Perkin
Trans. 1 2002, 581–582.
[1] a) A. J. Mancuso, S. L. Huang, D. Swern, J. Org. Chem. 1978,
43, 2480–2482; b) R. K. Dieter, Tetrahedron 1999, 55, 4177–
4236; c) S. Ceccarelli, U. Piarulli, C. Gennari, J. Org. Chem.
2000, 65, 6254–6256; d) B. Hatano, J.-i. Kadokawa, H. Tagaya,
Tetrahedron Lett. 2002, 43, 5859–5861; e) X. J. Wang, L.
Zhang, X. Sun, Y. Xu, D. Krishnamurthy, C. H. Senanayake,
Org. Lett. 2005, 7, 5593–5595; f) H. H. Xu, K. Ekoue-Kovi, C.
Wolf, J. Org. Chem. 2008, 73, 7638–7650; g) O. Chuzel, A.
Roesch, J. P. Genet, S. Darses, J. Org. Chem. 2008, 73, 7800–
2666
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 2662–2667