Reduction of Isatin-Derived Electron-Deficient Alkenes
Scheme 5. Plausible mechanism for the reduction reaction.
Conclusions
Acknowledgments
We have demonstrated a novel, highly chemoselective re-
duction of the C=C double bond in isatin-derived electron-
deficient alkenes promoted by alkylphosphanes with water
under mild reaction conditions to afford the products in
good to excellent yields. Moreover, a plausible mechanism
is proposed on the basis of deuterium labeling and control
experiments as well as DFT calculations. Research is in pro-
gress to elucidate further mechanistic details of these reac-
tions and to understand their scope and limitations.
We thank the Shanghai Municipal Committee of Science and Tech-
nology (08dj1400100-2), the National Basic Research Program of
China (973-2009CB825300), the Fundamental Research Funds for
the Central Universities, and the National Natural Science Founda-
tion of China (21072206, 20872162, 20672127, 20732008,
20821002, and 20702013) for financial support.
[1] For selected reviews on phosphane-catalyzed reactions, see: a)
X. Lu, C. Zhang, Z. Xu, Acc. Chem. Res. 2001, 34, 535–544;
b) J. L. Methot, W. R. Roush, Adv. Synth. Catal. 2004, 346,
1035–1050; c) L.-W. Ye, J. Zhou, Y. Tang, Chem. Soc. Rev.
2008, 37, 1140–1152; d) D. S. Glueck, Chem. Eur. J. 2008, 14,
7108–7117; e) B. J. Cowen, S. J. Miller, Chem. Soc. Rev. 2009,
38, 3102–3116; f) A. Marinetti, A. Voituriez, Synlett 2010, 174;
g) Y. Wei, M. Shi, Acc. Chem. Res. 2010, 43, 1005–1018; for
other related reactions, see: h) X.-F. Zhu, C. E. Henry, J. Wang,
T. Dudding, O. Kwon, Org. Lett. 2005, 7, 1387–1390; i) X.-F.
Zhu, A.-P. Schaffner, R. C. Li, O. Kwon, Org. Lett. 2005, 7,
2977–2980; j) X.-F. Zhu, C. E. Henry, O. Kwon, J. Am. Chem.
Soc. 2007, 129, 6722–6723; k) X.-F. Zhu, C. E. Henry, O.
Kwon, Tetrahedron 2005, 61, 6276–6282; l) X.-F. Zhu, J. Lan,
O. Kwon, J. Am. Chem. Soc. 2003, 125, 4716–4717.
Experimental Section
General Procedure for the Reduction of Isatin-Derived Electron-
Deficient Alkenes 1: In a flame-dried Schlenk flask was placed 1
(0.10 mmol) under argon, and then anhydrous THF (1.0 mL) and
H2O (100 μL) were added slowly. PMe3 (1.0 m in THF, 0.12 mmol)
was then added quickly. The reaction mixture was stirred at room
temperature for 24 h. After that, the solvent was removed under
reduced pressure and the residue was purified by silica gel flash
column chromatography (pentane/EtOAc, 10:1) to give the corre-
sponding product 2.
[2] I. C. Stewart, R. G. Bergman, D. F. Toste, J. Am. Chem. Soc.
2003, 125, 8696–8697.
Compound 2a: White solid (28 mg, 99% yield); m.p. 119–121 °C.
[3] a) H. Staudinger, J. Meyer, Helv. Chim. Acta 1919, 2, 635–646;
for some selected references on the application of the Staud-
inger reaction, see: b) E. C. Lee, B. L. Hodous, E. Bergin, C.
Shih, G. C. Fu, J. Am. Chem. Soc. 2005, 127, 11586–11587; c)
Y. Liang, L. Jiao, S. Zhang, J. Xu, J. Org. Chem. 2005, 70, 334–
337; d) J. Li, H.-N. Chen, H. Chang, J. Wang, C.-W. T. Chang,
Org. Lett. 2005, 7, 3061–3064; e) P. T. Nyffeler, C.-H. Liang,
K. M. Koeller, C.-H. Wong, J. Am. Chem. Soc. 2002, 124,
10773–10778.
[4] W. Zhang, M. Shi, Chem. Commun. 2006, 1218–1220.
[5] M. Shi, X.-G. Liu, Y.-W. Guo, W. Zhang, Tetrahedron 2007,
63, 12731–12734.
[6] W. Zhang, M. Shi, Tetrahedron 2006, 62, 8715–8719.
[7] F. Zhou, Y.-L. Liu, J. Zhou, Adv. Synth. Catal. 2010, 352,
1381–1407.
IR (CH Cl ): ν = 2922, 2852, 1691, 1612, 1486, 1463, 1416, 1365,
˜
2
2
1343, 1309, 1194, 1180, 1169, 1080, 748, 733, 696 cm–1. H NMR
(400 MHz, CDCl3, TMS): δ = 2.23 (s, 3 H, CH3), 2.92 (dd, J =
8.4, 18.4 Hz, 1 H, CH2), 3.32 (dd, J = 3.2, 18.4 Hz, 1 H, CH2),
3.95 (dd, J = 3.2, 8.4 Hz, 1 H, CH), 4.91 (d, J = 15.2 Hz, 1 H,
CH2), 4.96 (d, J = 15.2 Hz, 1 H, CH2), 6.71 (d, J = 8.0 Hz, 1 H,
Ar), 6.95–6.99 (m, 1 H, Ar), 7.13–7.19 (m, 2 H, Ar), 7.21–7.35 (m,
5 H, Ar) ppm. 13C NMR (100 MHz, CDCl3, TMS): δ = 29.9, 41.0,
43.8, 44.4, 109.0, 122.5, 124.1, 127.2, 127.5, 128.0, 128.8, 135.8,
143.3, 177.5, 205.2 ppm. MS (EI): m/z (%) = 279 (18.8) [M]+, 236
(47.4), 158 (25.0), 91 (100.0), 77 (9.1), 65 (16.3), 43 (12.3). HRMS
(EI): calcd. for C18H17NO2: 279.1259; found 279.1258.
1
Supporting Information (see footnote on the first page of this arti-
cle): 1H and 13C NMR spectroscopic and analytic data for com-
pounds 1 and 2 and deuterium-labeling experiments.
[8] These are average values based on two deuterium-labeling ex-
periments. For details, see the Supporting Information.
Eur. J. Org. Chem. 2011, 2668–2672
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
2671