Scheme 1. Proposed Approach of R-Angelica Lactone with
Aldimine
Figure 1. Chiral ligands used in this study.
Table 1. Optimization of the Reaction Conditionsa
vinylogous Mannich-type (AVM) reaction7ꢀ9 of this
deconjugated butenolide to afford γ,γ-disubstituted bute-
nolides (Scheme 1, path c) has not been achieved. Herein,
we describe a N,N0-dioxideꢀScIII complex10 catalyzed
direct AVM reaction of R-angelica lactone to provide the
δ-amino butenolide blocks bearing adjacent quaternary
and tertiary stereocenters.11,12
MS (3 A) yieldb (%)
drc
eec (%)
˚
entry
L/metal ratio
1
L1/Cu(OTf)2 1/1
L1/Mg(OTf)2 1/1
L1/Ni(acac)2 1/1
L1/In(OTf)3 1/1
L1/Sc(OTf)3 1/1
L1/Y(OTf)3 1/1
L1/La(OTf)3 1/1
L2/Sc(OTf)3 1/1
L2/Sc(OTf)3 1/1
none
none
none
none
none
none
none
none
30 mg
NR
NR
NR
NR
22
2
3
4
5
85/15
90/10
85/15
93/7
68
23
20
90
82
94
95
6d
7d
8
13
(8) For selected recent reports of catalytic asymmetric Mannich
reactions involving aldimines, see: (a) Wenzel, A. G.; Jacobsen, E. N.
J. Am. Chem. Soc. 2002, 124, 12964. (b) Uraguchi, D.; Sorimachi, K.;
Terada, M. J. Am. Chem. Soc. 2004, 126, 11804. (c) Hamashima, Y.;
Sasamoto, N.; Hotta, D.; Somei, H.; Umebayashi, N.; Sodeoka, M.
Angew. Chem., Int. Ed. 2005, 44, 1525. (d) Cozzi, P. G.; Rivalta, E.
Angew. Chem., Int. Ed. 2005, 44, 3600. (e) Song, J.; Wang, Y.; Deng, L. J.
Am. Chem. Soc. 2006, 128, 6048. (f) Chi, Y.; Gellman, S. H. J. Am. Chem.
Soc. 2006, 128, 6804. (g) Hasegawa, A.; Naganawa, Y.; Fushimi, M.;
Ishihara, K.; Yamamoto, H. Org. Lett. 2006, 8, 3175. (h) Giera, D. S.;
Sickert, M.; Schneider, C. Org. Lett. 2008, 10, 4259.
(9) (a) Josephsohn, N. S.; Snapper, M. L.; Hoveyda, A. H. J. Am.
Chem. Soc. 2004, 126, 3734. (b) Suto, Y.; Kanai, M.; Shibasaki, M. J.
Am. Chem. Soc. 2007, 129, 500. (c) Yamanaka, M.; Itoh, J.; Fuchibe, K.;
Akiyama, T. J. Am. Chem. Soc. 2007, 129, 6756. (d) Hatano, M.; Horibe,
T.; Ishihara, K. J. Am. Chem. Soc. 2010, 132, 56. (e) Shepherd, N. E.;
Tanabe, H.; Xu, Y.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc.
2010, 132, 3666. (f) Liu, T. Y.; Cui, H. L.; Long, J.; Li, B. J.; Wu, Y.;
Ding, L. S.; Chen, Y. C. J. Am. Chem. Soc. 2007, 129, 1878.
19
43
9
10e
68
91/9
L2/Sc(OTf)3 1.2/1 30 mg
74
95/5
11e,f L2/Sc(OTf)3 1.2/1 30 mg
81
95/5
a Unless otherwise noted, the reactions were performed with 1a (0.10
mmol), metal (0.005 mmol), and N,N0-dioxide under nitrogen in THF
(0.5 mL) at 30 °C for 15 min, and then 2a (0.12 mmol) was added at 0 °C.
The reaction mixture was stirred at 0 °C for 18 h. b Isolated yield, NR =
no reaction. c Determined by chiral HPLC analysis (Chiralcel IC).
d Reaction was performed at 30 °C. e 2-Me-THF as solvent. f Using 0.3
mmol of 1a, adding 2a two times and preparing catalyst beforehand.
In the previous studies using R-angelica lactone as viny-
logous nucleophile,4 chiral amine catalysts were used that
might aid in the R-deprotonation to form activated enolate
(Scheme 1, A). We envisioned that this donor could also be
activatedthroughinsitu generated O-bond metalenolate in
the presence of Lewis acids (Scheme 1, B). The model
reaction was initiated with R-angelica lactone 2a and N-
arylaldimine 1a. Various Lewis acids coordinated with
chiral N,N0-dioxide ligand L1 (Figure 1) were surveyed
(Table 1, entries 1ꢀ5), and only Sc(OTf)3 could afford the
γ-regioselective product 3a in 22% yield with moderate dr
and ee values at 0 °C (Table 1, entry 5). At higher
temperature (30 °C), other lanthanide metals could per-
form the reaction with worse yields and ee values (Table 1,
entries 6 and 7). Comparatively, the conjugated furanone
2b (Scheme 2) failed to undergo the AVM reaction, and no
product was observed under L1ꢀSc(OTf)3 catalysis. All of
these implied that the approach of R-enolization would be
responsible for the occurrence of nucleophilic addition.
(10) For our work with the N,N0-dioxideꢀmetal complexes, see: (a)
Xie, M. S.; Chen, X. H.; Zhu, Y.; Gao, B.; Lin, L. L.; Liu, X. H.; Feng,
X. M. Angew. Chem., Int. Ed. 2010, 49, 3799. (b) Cai, Y. F.; Liu, X. H.;
Hui, Y. H.; Jiang, J.; Wang, W. T.; Chen, W. L.; Lin, L. L.; Feng, X. M.
Angew. Chem., Int. Ed. 2010, 49, 6160. (c) Wang, F.; Liu, X. H.; Zhang,
Y. L.; Lin, L. L.; Feng, X. M. Chem. Commun 2009, 7297. (d) Zhou, X.;
Shang, D. J.; Zhang, Q.; Lin, L. L.; Liu, X. H.; Feng, X. M. Org. Lett.
2009, 11, 1401.
(11) For reviews of catalytic enantioselective construction of qua-
ternary stereocenters, see: (a) Christoffers, J.; Baro, A. Angew. Chem.,
Int. Ed. 2003, 42, 1688. (b) Peterson, E. A.; Overman, L. E. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 11943. (c) Ramon, D. J.; Yus, M. Curr. Org.
Chem. 2004, 8, 149. (d) Christoffers, J.; Baro, A. Adv. Synth. Catal. 2005,
347, 1473.
(12) For selected examples of catalytic construction of adjacent
quaternary and tertiary stereocenters, see: (a) Taylor, M. S.; Jacobsen,
E. N. J. Am. Chem. Soc. 2003, 125, 11204. (b) Austin, J. F.; Kim, S.-G.;
Sinz, C. J.; Xiao, W.-J.; MacMillan, D. W. C. Proc. Natl. Acad. Sci. U.S.
A. 2004, 101, 5482. (c) Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo,
C.; Foxman, B. M.; Deng, L. Angew. Chem., Int. Ed. 2005, 44, 105. (d)
Poulsen, T. B.; Alemparte, C.; Saaby, S.; Bella, M.; Jørgensen, K. A.
Angew. Chem., Int. Ed. 2005, 44, 2896. (e) Lalonde, M. P.; Chen, Y.;
Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 6366. (f) van Steenis, D.
J. V. C.; Marcelli, T.; Lutz, M.; Spek, A. L.; van Maarseveen, J. H.;
Hiemstra, H. Adv. Synth. Catal. 2007, 349, 281.
Org. Lett., Vol. 13, No. 12, 2011
3057