Fig. 6 Calculated frontier molecular orbitals for neutral ureas 3a,b and sulfonamides 4a,b. Non-overlapping HOMO and LUMO orbitals in the
electron-acceptor substituted systems result in charge transfer quenching of the neutral receptors.
central alkynyl system, resulting in radiative de-excitation and
thus fluorescence. In 3b and 4b, however, a charge-transfer
fluorescence state is generated, resulting in quenched
fluorescence, similar to other known arylacetylene scaffolds.13
The fluorescence OFF–ON response seems to be intramolecularly
excimeric in nature, with this emission having an intriguing
dependence on counterion, which warrants further study.
In conclusion, we have disclosed the development of a
receptor scaffold with switchable ‘‘ON–OFF’’ or ‘‘OFF–ON’’
fluorescence based upon judicious choice of the pendant
phenyl functionalities. Remarkably, these results indicate that
this class of receptors can function as a positive response
(OFF–ON) fluorescent indicator for chloride ion, which
augurs well for applications in cellular ion staining applications
and molecular probe design.1 Additionally, the occurrence of
both a colorimetric and switchable fluorescent ON–OFF or
OFF–ON response in a single class of compounds is promising
for application in molecular logic systems, where they could
conceivably function as complex gates, e.g., INHIBIT or
enabled OR operators. Binding studies with simple biological
anions, epifluorescence studies and further modifications
of receptor structures are currently underway and will be
reported in due course.
1 For reviews of small molecule biological imaging see:
(a) K. Kikuchi, Chem. Soc. Rev., 2010, 39, 2048;
(b) C. N. Carroll, J. J. Naleway, M. M. Haley and
D. W. Johnson, Chem. Soc. Rev., 2010, 39, 3875.
2 For reviews of molecular logic see: (a) C. A. Mirkin and M. A. Ratner,
Molecular Electronics, Annual Reviews, Inc, 1992, vol. 43;
(b) B. L. Feringa, Molecular Switches, Wiley-VCH GmbH, Weinheim,
Germany, 2001; (c) A. G. Montalban, S. M. Baum, A. G. M. Barrett
and B. M. Hoffman, Dalton Trans., 2003, 2093; (d) O.-J. Norum,
P. K. Selbo, A. Weyergang, K.-E. Giercksky and K. Berg,
J. Photochem. Photobiol. B, 2009, 96, 83.
3 (a) Themed issue in supramolecular chemistry of anions and
references therein: P. A. Gale and T. Gunnlaugsson, Chem.
Soc. Rev., 2010, 39, 3595; (b) B. Valeur, Molecular Fluorescence,
Wiley-VCH Verlag GmbH, Weinheim, Germany, 2002, p. 273.
4 (a) L. Fabbrizzi, F. Gatti, P. Pallavicini and L. Parodi, New J.
Chem., 1998, 1403; (b) H. Shizuka and S. Tobita, J. Am. Chem.
Soc., 1982, 104, 6919; (c) J. H. Clements and S. E. Webber,
Macromolecules, 2004, 37, 1531; (d) A. P. de Silva, H. Q. Nimal
Gunaratne and C. P. McCoy, Chem. Commun., 1996, 2399.
5 (a) G. De Santis, L. Fabrizzi, M. Licchelli, A. Poggi and
A. Taglietti, Angew. Chem., Int. Ed. Engl., 1996, 35, 202;
(b) T. Gunnlaugsson, A. P. Davis, J. E. O’Brien and M. Glynn,
Org. Biomol. Chem., 2005, 3, 48; (c) S. E. Garcıa-Garrido,
C. Caltagirone, M. E. Light and P. A. Gale, Chem. Commun.,
2007, 1450.
6 (a) S. J. Dickson, A. N. Swinburne, M. J. Paterson, G. O. Lloyd,
A. Beeby and J. W. Steed, Eur. J. Inorg. Chem., 2009, 3879–3882;
(b) A. Roque, F. Pina, S. Alves, R. Ballardini, M. Maestri and
V. Balzani, J. Mater. Chem., 1999, 9, 2265.
This research was supported by the NIH (GM087398-02)
and the University of Oregon (UO). C.N.C., O.B.B. and
S.P.M. acknowledge the NSF for Integrative Graduate
Education and Research Traineeships (DGE-0549503).
C.A.J. thanks UO for a Doctoral Research Fellowship.
D.W.J. is a Cottrell Scholar of the Research Corporation for
Science Advancement.
7 C. N. Carroll, O. B. Berryman, C. A. Johnson II, L. N. Zakharov,
M. M. Haley and D. W. Johnson, Chem. Commun., 2009, 2520.
8 J. M. Heemstra and J. S. Moore, Org. Lett., 2004, 6, 659–662.
9 Protonation of the receptors with HBr resulted in mixed emission
bands at both B404 nm and B515 nm. See theꢁESI.
10 The binding preference for Clꢁ over CF3CO2 can be inferred
from the magnitude of the binding constant for Clꢁ with 2ꢀTFA
from ref. 7.
11 See ESI for spectra of these receptors (2, 3a, 4a) with gaseous HCl.
12 (a) M. J. Frisch, et al., Gaussian 03, Revision B.04, Gaussian, Inc,
Pittsburgh PA, 2003. Full reference in ESI; (b) Spartan 08,
Wavefunction, Inc., Irvine, CA, USA.
Notes and references
z The addition of HNO3 or camphorsulfonic acid results in the
protonation of the receptor by UV-Vis, but does not result in an increase
in fluorescence in receptors 3b or 4b. We tentatively attribute this to the
size difference of these anions compared to Clꢁ, which precludes the
formation of either the ‘‘U’’ conformation reported in ref. 7 or dimeric
species seen in O. B. Berryman, C. A. Johnson II, L. N. Zakharov,
M. M. Haley, and D. W. Johnson, Angew. Chem., Int. Ed., 2008, 47, 117.
13 (a) J. A. Marsden, J. J. Miller, L. D. Shirtcliff and M. M. Haley,
J. Am. Chem. Soc., 2005, 127, 2464; (b) A. J. Zucchero,
J. N. Wilson and U. H. F. Bunz, J. Am. Chem. Soc., 2006, 128,
11872; (c) E. L. Spitler, L. D. Shirtcliff and M. M. Haley, J. Org.
Chem., 2007, 72, 86; (d) A. J. Zucchero, P. L. McGrier and U. H.
F. Bunz, Acc. Chem. Res., 2010, 43, 397.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 5539–5541 5541