Table 1 Enantioselective alkynylation of ketones catalyzed by Li salt of 1
Entry
Ketone (R1, R2)
Alkyne (R3)
Product
%Yielda
%eeb,c
1
2
3
4
5
6
7
8
2b (Ph, Me)
2b (Ph, Me)
2b (Ph, Me)
2b (Ph, Me)
3a (Ph)
3b (Bu)
3c (BnOCH2)
3d (tBu)
3a (Ph)
3a (Ph)
3a (Ph)
3a (Ph)
3a (Ph)
3a (Ph)
3a (Ph)
3a (Ph)
3a (Ph)
3a (Ph)
4ba
4bb
4bc
4bd
4ca
4da
4ea
4fa
4ga
4ha
4ia
96
89
97
88
93
99
91
99
93
95
93
89
94
96
93
87
86
55
73
7
57
39
88
92
92
91
85
87
2c (Ph, Et)
2d (Ph, iPr)
2e (cHex, Me)
2f (PhCH2CH2, Me)
2g (4-MeC6H4, Me)
2h (4-MeOC6H4, Me)
2i (3,4,5-(MeO)3C6H2, Me)
2j (4-FC6H4, Me)
2k (2-Naph, Me)
2l (3-Py, Me)
9
10
11
12
13
14
4ja
4ka
4la
a
b
c
Isolated yields. For the reaction conditions, see ref. 13. Determined by chiral HPLC. For the absolute configurations of the product,
see ref. 14.
Propiophenone 2c gave a decreased selectivity (entry 5), and
isobutyrophenone 2d gave an almost racemic product (entry 6),
suggesting that the bulkiness of the aliphatic group has an
inferior effect on selectivity. Aliphatic ketones 2e and 2f gave
lower selectivities than acetophenone, but again the difference
of steric bulkiness between the two substituents around ketone
plays an important role in enantiocontrol (entries 7 and 8). An
electron-donating or -deficient substituent on the benzene ring
of acetophenone did not affect the selectivity. Most acetophenone
derivatives gave results similar to that of acetophenone itself
(entries 9–13).
Asymmetry, 2009, 20, 1837–1841; (d) J.-C. Zhong, S.-C. Hou,
Q.-H. Bian, M.-M. Yin, R.-S. Na, B. Zheng, Z.-Y. Li, S.-Z. Liu
and M. Wang, Chem.–Eur. J., 2009, 15, 3069–3071.
5 Ti catalysts with alkynylzinc: (a) G. Gao, D. Moore, R.-G. Xie and
L. Pu, Org. Lett., 2002, 4, 4143–4146; (b) X.-S. Li, G. Lu,
W. H. Kwok and A. S. C. Chan, J. Am. Chem. Soc., 2002, 124,
¨
12636–12637; (c) H. Koyuncu and O. Dogan, Org. Lett., 2007, 9,
3477–3479.
6 Metal triflate catalysts: (a) M. Yamaguchi, A. Hayashi and
T. Minami, J. Org. Chem., 1991, 56, 4091–4092;
(b) D. E. Frantz, R. Fassler and E. M. Carreira, J. Am. Chem.
¨
¨
Soc., 1999, 121, 11245–11246; (c) D. E. Frantz, R. Fassler and
E. M. Carreira, J. Am. Chem. Soc., 2000, 122, 1806–1807;
(d) N. K. Anand and E. M. Carreira, J. Am. Chem. Soc., 2001,
123, 9687–9688; (e) M. Yamashita, K. Yamada and K. Tomioka,
Adv. Synth. Catal., 2005, 347, 1649–1652.
7 Other catalyses: (a) E. J. Corey and K. A. Cimprich, J. Am. Chem.
Soc., 1994, 116, 3151–3152; (b) T. Ooi, T. Miura, K. Ohmatsu,
A. Saito and K. Maruoka, Org. Biomol. Chem., 2004, 2,
3312–3319; (c) R. Takita, Y. Fukuta, R. Tsuji, T. Ohshima and
M. Shibasaki, Org. Lett., 2005, 7, 1363–1366; (d) R. Takita,
K. Yakura, T. Ohshima and M. Shibasaki, J. Am. Chem. Soc.,
2005, 127, 13760–13761.
Our protocol could be applied to the asymmetric synthesis
of bioactive compounds. Using the above conditions, the
reaction of 3-acetylpyridine 2l and phenylacetylene 3a gave
the product 4la, which has antifungal activity,15 in high
chemical and optical yields. These yields were the highest of
those reported for the enantioselective alkynylation of
acetylpyridines.
In summary, we have developed an enantioselective
alkynylation of ketones using lithium acetylide in the presence
of chiral lithium binaphtholate as a catalyst. This is the first
example of catalytic enantioselective addition of lithium acetylide
to carbonyl compounds without the aid of other metal sources.
Studies on the mechanism as well as the design of chiral
catalysts to further enhance enantioselectivity are currently
in progress.
8 Selected examples for the enantioselective alkynylation of ketones:
(a) A. S. Thompson, E. G. Corley, M. F. Huntington and E. J.
J. Grabowski, Tetrahedron Lett., 1995, 36, 8937–8940; (b) L. Tang,
C.-y. Chen, R. D. Tillyer, E. J. J. Grabowski and P. J. Reider,
Angew. Chem., Int. Ed., 1999, 5, 711–713; (c) P. G. Cozzi, Angew.
Chem., Int. Ed., 2003, 42, 2895–2898; (d) G. Lu, X. Li, X. Jia,
W. L. Chan and A. S. C. Chan, Angew. Chem., Int. Ed., 2003, 42,
5057–5058; (e) B. Saito and T. Katsuki, Synlett, 2004, 1557–1560;
(f) P. G. Cozzi and S. Alesi, Chem. Commun., 2004, 2448–2449;
(g) Y. Zhou, R. Wang, Z. Xu, W. Yan, L. Liu, Y. Kang and Z. Han,
Org. Lett., 2004, 6, 4147; (h) L. Liu, R. Wang, Y.-F. Kang, C. Chen,
X.-Q. Xu, Y.-C. Zhou, M. Ni, H.-Q. Cai and M.-Z. Gong, J. Org.
Chem., 2005, 70, 1084–1086; (i) G. Lu, X. Li, Y.-M. Li, F. Y. Kwong
and A. S. C. Chan, Adv. Synth. Catal., 2006, 348, 1926–1933;
(j) C. Chan, L. Hong, Z.-Q. Xu, L. Liu and R. Wang, Org. Lett.,
2006, 8, 2277–2280; (k) K. Pathak, A. P. Bhatt, S. H. R. Abdi,
R. I. Kureshy, N.-U. H. Khan, I. Ahmad and R. V. Jasra, Chirality,
2007, 19, 82–88; (l) R. Motoki, M. Kanai and M. Shibasaki, Org.
Lett., 2007, 9, 2997–3000.
Notes and references
1 (a) L. Pu, Tetrahedron, 2003, 59, 9873–9886; (b) P. G. Cozzi,
R. Hilgraf and N. Zimmermann, Eur. J. Org. Chem., 2004,
4095–4105; (c) D. J. Ramon and M. Yus, Angew. Chem., Int.
´
Ed., 2004, 43, 284–287; (d) G. Lu, Y.-M. Li, X.-S. Li and A. S. C.
Chan, Coord. Chem. Rev., 2005, 249, 1736–1744; (e) O. Riant and
J. Hannedouche, Org. Biomol. Chem., 2007, 5, 873–888;
(f) M. Hatano and K. Ishihara, Synthesis, 2008, 1647–1675; (g) B. M.
Trost and A. H. Weiss, Adv. Synth. Catal., 2009, 351, 963–983.
2 T. Mukaiyama, K. Suzuki, K. Soai and T. Sato, Chem. Lett., 1979,
447–448.
9 (a) K. Tanaka, T. Ueda, T. Ichibakase and M. Nakajima, Tetra-
hedron Lett., 2010, 51, 2168–2169; (b) T. Ueda, K. Tanaka,
T. Ichibakase, Y. Orito and M. Nakajima, Tetrahedron, 2010,
66, 7726–7731.
3 S. Niwa and K. Soai, J. Chem. Soc., Perkin Trans. 1, 1990,
937–943.
4 Amino alcohol catalysts with alkynylzinc: (a) B. M. Trost,
A. H. Weiss and A. J. von Wangelin, J. Am. Chem. Soc., 2006,
128, 8–9; (b) S. Dahmen, Org. Lett., 2004, 6, 2113–2116;
(c) P.-Y. Wu, H.-L. Wu, Y.-Y. Shen and B.-J. Uang, Tetrahedron:
10 Recent examples of using lithium binaphtholate as a catalyst:
(a) R. Schiffers and H. B. Kagan, Synlett, 1997, 1175–1178;
(b) I. P. Holmes and H. B. Kagan, Tetrahedron Lett., 2000, 41,
7453–7456; (c) M. Nakajima, Y. Orito, T. Ishizuka and
S. Hashimoto, Org. Lett., 2004, 6, 3763–3765; (d) M. Hatano,
T. Ikeno, T. Miyamoto and K. Ishihara, J. Am. Chem. Soc., 2005,
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 5614–5616 5615