F. Jiang et al. / Tetrahedron Letters 52 (2011) 2844–2848
2847
7. Selected papers see: (a) Lundgren, S.; Lutsenko, S.; Jönsson, C.; Moberg, C. Org.
Lett. 2003, 5, 3663–3665; (b) Bisai, A.; Singh, V. K. Org. Lett. 2006, 8, 2405–2408;
(c) Yoo, K. S.; Park, C. P.; Yoon, C. H.; Sakaguchi, S.; O’Neill, J.; Jung, K. W. Org.
Lett. 2007, 9, 3933–3935; (d) Yi, C. S.; Kwon, K.-H.; Lee, D. W. Org. Lett. 2009, 11,
1567–1569.
8. For a review see: (a) McManus, H. A.; Guiry, P. J. Chem. Rev. 2004, 104, 4151–
4202; Selected papers see: (b) Gant, T. G.; Noe, M. C.; Corey, E. J. Tetrahedron
Lett. 1995, 36, 8745–8748; (c) Uozumi, Y.; Kyota, H.; Kishi, E.; Kitayama, K.;
Hayashi, T. Tetrahedron: Asymmetry 1996, 7, 1603–1606; (d) Andrus, M. B.;
Asgari, D.; Sclafani, J. A. J. Org. Chem. 1997, 62, 9365–9368; (e) Rippert, A. J. Helv.
Chim. Acta 1998, 81, 676–687; (f) Imai, Y.; Zhang, W.; Kida, T.; Nakatsuji, Y.;
Ikeda, I. Synlett 1999, 1319–1321.
t-Bu
O
N
N
O
t-Bu
N
N
N
Cu
N
N
Cu
N
O
O
t-Bu
t-Bu
Br
Br
(S,aS,S)-8d
(S,aR,S)-8d
Figure 7. The two diasteromers of the complex 8d.
9. (a) Imai, Y.; Zhang, W.; Kida, T.; Nakatsuji, Y.; Ikeda, I. Tetrahedron Lett. 1997,
38, 2681–2684; (b) Imai, Y.; Zhang, W.; Kida, T.; Nakatsuji, Y.; Ikeda, I. J. Org.
Chem. 2000, 65, 3326–3333; (c) Zhang, W.; Xie, F.; Matsuo, S.; Imahori, Y.; Kida,
T.; Nakatsuji, Y.; Ikeda, I. Tetrahedron: Asymmetry 2006, 17, 767–777; (d) Zhang,
W.; Xie, F.; Yoshinaga, H.; Kida, T.; Nakatsuji, Y.; Ikeda, I. Synlett 2006, 1185–
1189; (e) Wang, F.; Zhang, Y. J.; Yang, G.; Zhang, W. Tetrahedron Lett. 2007, 48,
4179–4182; (f) Tian, F.; Yao, D.; Liu, Y.; Xie, F.; Zhang, W. Adv. Synth. Catal.
2010, 352, 1841–1845; (g) Liu, Y. Y. G.; Yao, D.; Tian, F.; Zhang, W. Sci. China.
Chem. 2011, 54, 87–94; (h) Yao, D.; Tian, F.; Zhang, W. Chin. J. Org. Chem. 2011,
31, in press.
uration of the complex 8d should be (S, aS, S)-8d (Fig. 7). This com-
plex has a trigonal planar coordination structure, in which the two
planes of the oxazoline rings are inclined to the N-Cu(I)-N coordi-
nation plane by the introduction of the bipyridinyl backbone in the
molecule. For (S, aR, S)-8d, the two substituents on the oxazoline
rings are almost in the coordination plane, while for (S, aS, S)-8d,
the two substituents are perpendicular to the plane in opposite
directions and almost out of plane. Therefore, the steric repulsion
between the substituents on the oxazoline rings and the Br coordi-
nated to the Cu(I) in (S, aS, S)-8d is much smaller than that in (S, aR,
S)-8d, resulting the formation of (S, aS, S)-8d other than (S, aR, S)-
8d.
In summary, novel C2-symmertic chiral bisoxazoline ligands
with a bipyridinyl backbone were prepared with ease, and the
complexation behaviors of these ligands toward Pd(II) and Cu(I)
were studied. It was found that these ligands afforded pyridine-
oxazoline-coordinated mono- or di-metal complexes upon com-
plexation with PdCl2(MeCN)2. The axial chirality of these com-
plexes was assigned as aR. However, upon complexation with
CuBr, these ligands afforded only one type of bisoxazoline-coordi-
nated complexes, the axial chirality of which was assigned as aS.
Further study on the application of these ligands to asymmetric
reactions is in progress in our laboratory.
10. Characterization data of the ligand 1a: 1H NMR (400 MHz, CDCl3): d 8.70 (dd,
J = 2.0 Hz, 4.8 Hz, 2H), 8.24 (dd, J = 2.0 Hz, 8.0 Hz, 2H), 7.36 (dd, J = 4.8 Hz,
8.0 Hz, 2H), 4.15–4.11 (m, 2H), 3.87–3.79 (m, 4H), 1.64–1.59 (m, 2H), 0.78 (t,
J = 6.0 Hz, 12H); 13C NMR (100 MHz, CDCl3): d 161.8, 158.4, 150.4, 137.4, 123.6,
122.6, 73.1, 70.6, 33.0, 18.9, 18.5; HR-MS calcd for C22H26N4O2, 378.2056,
found 378.2059. Characterization data of the ligand 1b: 1H NMR (400 MHz,
CDCl3): d 8.75 (s, 2H), 8.36–8.32 (m, 2H), 7.42–7.35 (m, 2H), 7.32–7.22 (m, 6H),
7.20–7.16 (m, 4H), 5.24 (dd, J = 8.4 Hz, 9.6 Hz, 2H), 4.54 (dd, J = 8.4 Hz, 9.6 Hz,
2H), 3.96 (t, J = 8.4 Hz, 2H); 13C NMR (100 MHz, CDCl3): d 163.8, 150.7, 142.3,
138.0, 128.8, 127.7, 126.9, 122.9, 122.8, 75.3, 70.4; HR-MS calcd for
C
28H22N4O2, 446.1743, found 446.1735. Characterization data of the ligand 1c:
1H NMR (400 MHz, CDCl3):
d
8.73 (dd, J = 2.0 Hz, 5.0 Hz, 2H), 8.23 (dd,
J = 2.0 Hz, 8.0 Hz, 2H), 7.37 (dd, J = 5.0 Hz, 8.0 Hz, 2H), 7.29–7.23 (m, 4H), 7.22–
7.17 (m, 2H), 7.13–7.10 (m, 4H), 4.42–4.34 (m, 2H), 4.08 (t, J = 8.8 Hz, 2H), 3.87
(dd, J = 7.4 Hz, 8.0 Hz, 2H), 3.02–2.95 (m, 2H), 2.59–2.52 (m, 2H); 13C NMR
(100 MHz, CDCl3): d 162.7, 158.1, 150.7, 138.2, 137.6, 129.4, 128.7, 126.6,
123.8, 122.7, 72.3, 68.3, 41.6; HR-MS calcd for C30H26N4O2, 474.2056, found
474.2059. Characterization data of the ligand 1d: 1H NMR (400 MHz, CDCl3): d
8.69 (dd, J = 2.0 Hz, 4.8 Hz, 2H), 8.25 (dd, J = 2.0 Hz, 8.0 Hz, 2H), 7.35 (dd,
J = 4.8 Hz, 8.0 Hz, 2H), 4.11–4.05 (m, 2H), 3.92–3.78 (m, 4H), 0.72 (s, 18H); 13
C
NMR (100 MHz, CDCl3): d 161.4, 158.7, 150.3, 137.3, 123.4, 122.5, 76.7, 68.7,
33.9, 26.0; HR-MS calcd for C24H30N4O2, 406.2369, found 406.2372.
11. (a) Mayers, A. I.; Himmelsbach, R. J. J. Am. Chem. Soc. 1985, 107, 682–685; (b)
Rawson, D.; Meyers, A. I. J. Chem. Soc., Chem. Commun. 1992, 494–496; (c)
Meyers, A. I.; Meier, A.; Rawson, D. Tetrahedron Lett. 1992, 33, 853–856.
12. Characterization data of the complex 8a: 1H NMR (400 MHz, CDCl3): d 8.68–8.61
(m, 2H), 8.04 (d, J = 8.0 Hz, 2H), 7.45–7.38 (m, 2H), 4.58–4.52 (m, 2H), 4.40–
4.33 (m, 2H), 4.30–4.22 (m, 2H), 1.71–1.61 (m, 2H), 0.60 (d, J = 8.0 Hz, 6H),
0.51(d, J = 8.0 Hz, 6H); HR-MS calcd for C22H26CuN4O2 ([MꢀBr]+), 441.1352,
found 441.1351. Characterization data of the complex 8b: 1H NMR (400 MHz,
CDCl3): d 8.65 (br s, 2H), 7.97 (d, J = 8.0 Hz, 2H), 7.34 (br s, 2H), 7.20–7.10 (m,
6H), 6.96–6.91 (m, 4H), 5.54–5.41 (m, 2H), 4.90–4.82 (m, 2H), 4.64–4.57 (m,
2H); HR-MS calcd for C28H22CuN4O2 ([MꢀBr]+), 509.1039, found 509.1048.
Characterization data of the complex 8c: 1H NMR (400 MHz, CDCl3): d 8.73 (br s,
2H), 8.04 (d, J = 8.0 Hz, 2H), 7.45(br s, 2H), 7.26–7.15 (m, 6H), 7.09–7.05 (m,
4H), 4.62(br s, 2H), 4.52–4.36 (m, 4H), 2.86–2.75 (m, 2H), 2.06–1.92 (m, 2H);
Acknowledgments
This work was supported by the National Nature Science Foun-
dation of China (No. 20772081), Science and Technology Commis-
sion of Shanghai Municipality (No. 09JC1407800) and Nippon
Chemical Industrial Co., Ltd. We thank Professor T. Imamoto and
Dr. M. Sugiya for the helpful discussion and Instrumental Analysis
Center of Shanghai Jiao Tong University for HR-MS analysis.
References and notes
HR-MS calcd for
C
30H26CuN4O2 ([MꢀBr]+), 537.1352, found 537.1364.
Characterization data of the complex 8d: 1H NMR (400 MHz, CDCl3): d 8.65 (br
s, 2H), 8.11 (d, J = 8.0 Hz, 2H), 7.43(br s, 2H), 4.54–4.44 (m, 4H), 4.32–4.25 (m,
2H), 0.64 (s, 18H); HR-MS calcd for C24H30CuN4O2 ([MꢀBr]+), 469.1665, found
469.1672.
1. Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric Catalysis I–
III; Springer: Berlin, 1999; Ojima, I. Catalytic Asymmetric Synthesis, Second ed.;
Wiley-V: New York, 2000; Lin, G.-Q.; Li, Y.-M.; Chan, A. S. C. Principles and
Applications of Asymmetric Synthesis; Wiley: New York, 2001; Dai, L.-X.; Hou, X.-
L. Chiral Ferrocenes in Asymmetric Catalysis; Wiley-VCH: Weinheim, Germany,
2009; Shioiri, T.; Izawa, K.; Konoike, T. Pharmaceutical Process Chemistry; Wiley-
VCH: Weinheim, Germany, 2010.
2. Brunner, H.; Obermann, U.; Wimmer, P. J. Organomet. Chem. 1986, 316, C1–C3.
3. Selected papers see: (a) Nishiyama, H.; Itoh, Y.; Matsumoto, H.; Park, S.-B.; Itoh,
K. J. Am. Chem. Soc. 1994, 116, 2223–2224; (b) Wu, X.; Shen, Y.; Ma, B.; Zhou, Q.;
Chan, A. S. C. J. Mol. Catal. A: Chem. 2000, 157, 59–63; (c) Cornejo, A.; Fraile, J.
M.; García, J. I.; García-Verdugo, E.; Gil, M. J.; Legarreta, G.; Luis, S. V.; Martínez-
Merino, V.; Mayoral, J. A. Org. Lett. 2002, 4, 3927–3930; (d) Cornejo, A.; Fraile, J.
M.; Garcia, J. I.; Gil, M. J.; Herrerias, C. I.; Legarreta, G.; Martinez-Merino, V.;
Mayoral, J. A. J. Mol. Catal. A: Chem. 2003, 196, 101–108; (e) Cornejo, A.; Fraile, J.
M.; García, J. I.; Gil, M. J.; Luis, S. V.; Martínez-Merino, V.; Mayoral, J. A. J. Org.
Chem. 2005, 70, 5536–5544.
4. Selected papers see: (a) Evans, D. A.; Fandrick, K. R.; Song, H.-J.; Scheidt, K. A.;
Xu, R. J. Am. Chem. Soc. 2007, 129, 10029–10041; (b) Singh, P. K.; Singh, V. K.
Org. Lett. 2010, 12, 80–83.
5. Selected papers see: (a) Perch, N. S.; Widenhoefer, R. A. J. Am. Chem. Soc. 1999,
121, 6960–6961; (b) Perch, N. S.; Pei, T.; Widenhoefer, R. A. J. Org. Chem. 2000,
65, 3836–3845; (c) Bhor, S.; Anilkumar, G.; Tse, M. K.; Klawonn, M.; Döbler, C.;
Bitterlich, B.; Grotevendt, A.; Beller, M. Org. Lett. 2005, 7, 3393–3396.
6. Selected papers see: (a) He, W.; Yip, K.-T.; Zhu, N.-Y.; Yang, D. Org. Lett. 2009,
11, 5626–5628; (b) Jiang, F.; Wu, Z.; Zhang, W. Tetrahedron Lett. 2010, 51, 5124–
5126.
13. Characterization data of the complex of ligand 1c with CuOTfꢁ0.5C6H6: 1H NMR
(400 MHz, CDCl3): d 8.76 (br s, 2H), 8.24 (br s, 2H), 7.42–7.00 (m, 12H), 4.40 (br
s, 2H), 4.00 (br s, 2H), 3.81 (br s, 2H), 2.97 (br s, 2H), 2.52 (br s, 2H); HR-MS
calcd for
C
30H26CuN4O2 ([MꢀOTf]+), 537.1352, found, 537.1356.
Characterization data of the complex of ligand 1c with CuCl: 1H NMR (400 MHz,
CDCl3): d 8.75 (br s, 2H), 8.06 (br s, 2H), 7.48–7.00 (m, 12H), 4.70–4.30 (m, 6H),
2.79 (br s, 2H), 2.05 (br s, 2H); HR-MS calcd for C30H26CuN4O2 ([MꢀCl]+),
537.1352, found, 537.1351.
14. Characterization data of the complex 9a: 1H NMR (400 MHz, CD2Cl2): d 9.19 (dd,
J = 6.0 Hz, 4.0 Hz, 1H), 8.87 (dd, J = 6.0 Hz, 4.0 Hz, 1H), 8.43 (dd, J = 8.0 Hz,
6.0 Hz, 1H), 8.29 (dd, J = 8.0 Hz, 6.0 Hz, 1H), 7.63–7.71 (m, 2H), 4.66–4.76 (m,
2H), 4.38–4.43 (m, 1H), 4.12–4.18 (m, 1H), 3.79–3.82 (m, 1H), 3.54–3.59 (m,
1H), 2.39–2.44 (m, 1H), 1.65–1.73 (m, 1H), 0.87 (d, J = 7.2 Hz, 3H), 0.84 (d,
J = 7.2 Hz, 6H), 0.58 (d, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CD2Cl2): d 164.8,
160.0, 156.8, 153.9, 153.3, 152.6, 141.3, 137.7, 129.4, 125.8, 124.7, 122.0, 73.3,
72.0, 71.6, 70.1, 32.6, 30.8, 18.7, 18.3, 17.8, 15.6; HR-MS calcd for
C24H29ClN5O2Pd
([MꢀCl+CH3CN]+),
560.1045,
found
560.1081.
Characterization data of the complex 9b: 1H NMR (400 MHz, CD2Cl2): d 8.91
(dd, J = 6.0 Hz, 4.0 Hz, 1H), 8.57 (dd, J = 6.0 Hz, 4.0 Hz, 1H), 8.47 (dd, J = 8.0 Hz,
6.0 Hz, 1H), 8.35 (dd, J = 8.0 Hz, 6.0 Hz, 1H), 7.70 (dd, J = 8.0 Hz, 4.0 Hz, 1H),
7.45–7.26 (m, 9H), 7.03–6.99 (m, 2H), 5.71–5.65 (m, 1H), 5.19–5.09 (m, 2H),
4.71–4.65 (m, 1H), 4.57–4.51 (m, 1H), 3.69–3.63 (m, 1H); 13C NMR (100 MHz,
CD2Cl2): d 164.5, 162.0, 155.9, 154.1, 153.3, 152.8, 141.7, 141.3, 138.7, 137.8,