M. Ghassemzadeh et al. / Polyhedron 30 (2011) 1760–1766
1765
and two triphenylphosphane molecules, respectively. The square
planar arrangement about the palladium centers in 2 is completed
by one chloride ligand and two trans-positioned triphenylphos-
phane molecules for Pd1 and one triphenylphosphane molecule
and one chloride ligand for Pd2. The latter is oriented cis to the
amine group of the heterocycle, indicating the strong influence
and twofold deprotonated AETTO. To our knowledge, among the
palladacycles containing 4-amino-6-alkyl/aryl-1,2,4-triazine-3-
thione as a ligand, complex 3 is the first example having a twofold
deprotonated species. Due to the determined molecular structures
of the complexes, the corresponding ligand acts as bidentate N,S-
chelating one to the metal centers. In the case of the binuclear
complex, the singly deprotonated triazine moiety acts as a bridge
between two metal centers via its endocyclic nitrogen atom.
of the
p-acids C@S and PPh3. A similar coordination mode is ob-
served in the tetrameric palladium(II) complex [Pd(L)]4ꢀ2C7H8,
where L is the twofold deprotonated Schiff-base (E)-4-(2-hydrox-
ybenzylideneamino)-6-methyl-3-thioxo-3,4-dihydro-1,2,4-triazin-
5(2H)-one [45].
Appendix A. Supplementary data
The graphical representation of 1 (Fig. 3) shows, except for the
disordered ethyl group (occupancy factor 0.65:0.35 for C51:C52), a
basically planar framework.
The Pd–Cl distances in 1 (232.3(2) and 228.8(2) pm) and those
in 2 (229.97(8) and 232.22(8) pm) are very similar to those in
[Pd(AMTTO)Cl2]ꢀCH3OH (232.2(2) and 228.9(1) pm) [44] and
[Pd(AMTTO)Cl(PPh3)]ClꢀCH3OH (231.14(6) pm) [46]. The strong
trans-influence of the sulfur atoms in comparison with the nitro-
gen atom is responsible for the observed differences in the Pd–Cl
distances.
CCDC 712072, 712073, 712074 and 773397 contains the sup-
plementary crystallographic data for compounds H3L, 1, 2 and 3.
graphic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax:
(+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.
References
[1] M. Akbar Ali, S.E. Livingstone, Coord. Chem. Rev. 13 (1974) 101.
[2] M.J.M. Campbell, Coord. Chem. Rev. 15 (1975) 279.
The Pd–Nhydrazine bond lengths of 202.0(5) pm (1) and
210.3(3) pm (2) compare well to those found in the AMTTO-palla-
dacycle and in the other palladium(II)–nitrogen–sulfur complexes
[30–36,44–50]. The observed Pd–N bond length of 199.2(3) pm in
3 is somewhat shorter than those in 1 and 2. This bond shortening
is attributed to the change in the hybridization of nitrogen atoms
as a consequence of the deprotonation. A similar Pd–N bond length
(202.8(2) pm) is also observed for the sp2-hybridized endocyclic
nitrogen atom in 2. Due to the stronger trans-influence of the
triphenylphosphane moieties compared with chloride, the Pd–S
bond distances in 1 and 2 are slightly shorter than the observed
one in 3 (224.7(6) pm (1), 227.43(8) pm (2) and 230.73(8) pm (3)).
The Pd–P bond lengths of 223.87(9), 232.90(9) and 238.39(9) pm
(2) and 230.22(8) and 230.73(8) pm (3) are shorter than the sum of
the single bond radii for palladium and phosphorus, i.e. 241 pm [51]
and fall in the wide range (221–246 pm) of PdII–PPh3 bond reference
values (average 230.2 pm) encountered in 248 entries [52]. The
presence of the H2L ligand in 2 and HL ligand in 3 leads only to mar-
ginal differences in the bonding parameters due to the delocaliza-
tion of the charge in III and IV, as shown in Scheme 2.
[3] P.G. More, R.B. Bhalvankar, J. Indian Chem. Soc. 81 (2004) 13.
[4] M. Yildiz, B. Dulger, S.Y. Koyuncu, B.M. Yapici, J. Indian Chem. Soc. 81 (2004) 7.
[5] Q. Li, H. Tang, Y. Li, M. Wang, L.-F. Wang, C.-G. Xia, J. Inorg. Biochem. 78 (2000)
167.
[6] M. Akbar Ali, A.H. Mirza, R.J. Butcher, M.T.H. Tarafder, T.B. Keat, A.M. Ali, J.
Inorg. Biochem. 92 (2002) 141.
[7] N.K. Singh, P. Tripathi, M.K. Bharty, A.K. Srivastava, S. Singh, R.J. Butcher,
Polyhedron 29 (2010) 1939.
[8] K.S. Siddiqi, S. Khan, S.A.A. Nami, M.M. El-Ajaily, Spectrochim. Acta 67 (2007)
995.
[9] P.G. Avaji, S.A. Patil, P.S. Badami, Transition Met. Chem. 32 (2007) 379.
[10] J.P. Scovill, D.L. Klayman, C.F. Franchino, J. Med. Chem. 25 (1982) 1261.
[11] E. Bermejo, R. Carballa, A. Castineiras, R. Dominguez, A.E. Liberta, C. Maichelle-
Mössmer, M.M. Salberg, D.X. West, Eur. J. Inorg. Chem. (1999) 965.
[12] T.S. Lobana, R. Sharma, G. Bawa, S. Khanna, Coord. Chem. Rev. 253 (2009) 977.
[13] A. Garoufis, S.K. Hadjikakou, N. Hadjiliadis, Coord. Chem. Rev. 253 (2009) 1384.
[14] S. Padhyé, G.B. Kauffman, Coord. Chem. Rev. 63 (1985) 127.
[15] D.P. Singh, R. Kumar, V. Malik, P. Tyagi, J. Enzyme Inhib. Med. Chem. 22 (2007)
177.
[16] J.S. Casas, M.S. García-Tasende, J. Sordo, Coord. Chem. Rev. 209 (2000) 197.
[17] I.C. Mendes, J.P. Moreira, N.L. Speziali, A.S. Mangrich, J.A. Takahashi, H. Beraldo,
J. Braz. Chem. Soc. 17 (2006) 1571.
[18] A. Kolocouris, K. Dimas, Ch. Pannecouque, M. Witvrouw, G.B. Foscolos, G.
Stamatiou, G. Fytas, G. Zoidis, N. Kolocouris, G. Andrei, R. Snoeck, E. De Clercq,
Bioorg. Med. Chem. Lett. 12 (2002) 723.
[19] M.B. Ferrari, S. Capacchi, G. Pelosi, G. Reffo, P. Tarasconi, R. Albertini, S. Pinelli,
P. Lunghi, Inorg. Chim. Acta 286 (1999) 134.
In the molecular structure of 1, one solvate molecule (water) is
bound to the endocyclic NH-group via
a hydrogen bridge
[20] A.G. Quiroga, J.M. Perez, I. Lopez-Solera, J.R. Masaguer, A. Luque, P. Roman, A.
Edwards, C. Alonso, C. Navarro-Ranninger, J. Med. Chem. 41 (1998) 1399.
[21] M.M. Makhlouf, Y.A. Maklad, Arzneim. Forsch. 54 (2004) 42.
[22] M. Amir, K. Shikha, Eur. J. Med. Chem. 39 (2004) 535.
[23] M. Amir, K. Shikha, Acta Pharm. 54 (2007) 31.
[24] V.P. Kruglenko, M.V. Povstyanoi, Pharm. Chem. J. 13 (1979) 729.
[25] K. Srinivas, U. Srinivas, V. Jayathirtha Rao, K. Bhanuprakash, K. Hara Kishore,
U.S.N. Murty, Bioorg. Med. Chem. Lett. 15 (2005) 1121.
[26] N.P. Belskaia, T.G. Deryabina, A.V. Koksharov, M.I. Kodess, W. Dehaen, A.T.
Lebedev, V.A. Bakulev, Tetrahedron Lett. 48 (2007) 9128.
[27] R. Paul, J.A. Brockman, W.A. Hallett, J.W. Hanifin, M.E. Tarrant, L.W. Torley, F.M.
Callahan, P.F. Fabio, B.D. Johnson, R.H. Lenhard, J. Med. Chem. 28 (1985) 1704.
[28] M. Kidwai, Y. Goel, R. Kumar, Indian J. Chem. 37B (1998) 174.
[29] K. Severin, R. Bergs, W. Beck, Angew. Chem. 110 (1998) 1722;
K. Severin, R. Bergs, W. Beck, Angew. Chem., Int. Ed. Engl. 37 (1998) 1634.
[30] F. Adhami, M. Ghassemzadeh, M.M. Heravi, A. Taeb, B. Neumüller, Z. Anorg.
Allg. Chem. 625 (1999) 1411.
[31] M. Ghassemzadeh, F. Adhami, M.M. Heravi, A. Taeb, S. Chitsaz, B. Neumüller, Z.
Anorg. Allg. Chem. 628 (2002) 2887.
[32] M. Ghassemzadeh, M.M. Pooramini, M. Tabatabaee, M.M. Heravi, B. Neumüller,
Z. Anorg. Allg. Chem. 630 (2004) 403.
[33] M. Ghassemzadeh, M.M. Heravi, B. Neumüller, Z. Anorg. Allg. Chem. 631
(2005) 2401.
[34] M. Ghassemzadeh, A. Sharifi, J. Malakootikhah, B. Neumüller, E. Iravani, Inorg.
Chim. Acta 357 (2004) 2245.
(N4ꢀ ꢀ ꢀO2d: 271.2(7) pm). 1 is fixed in a network of hydrogen
bridges, which is formed between the amine group of the hetero-
cycle, the oxygen atom of the solvate molecule and the halide
atoms of adjacent complexes (N2ꢀ ꢀ ꢀCl1a: 330.5(6) pm, N2ꢀ ꢀ ꢀCl2b:
332.2(6) pm, N2ꢀ ꢀ ꢀCl1c: 332.2(6) pm, O2ꢀ ꢀ ꢀCl1e: 319.4(7) pm and
O2ꢀ ꢀ ꢀCl1f: 329.2(7) pm) (Fig. 6).
In 2, the NH2 group of one cation acts as a bridging agent be-
tween one oxygen atom of a nitrate anion and the oxygen atom
of an adjacent cation using both its hydrogen atoms via hydrogen
bridges (N2–H1ꢀ ꢀ ꢀO2: 279.7(4) pm and N2–H1–O2: 150(4)°,
N2–H2ꢀ ꢀ ꢀO1a: 271.3(4) pm and N2–H2–O1a 161(4)°). This coordi-
nation mode is responsible for the formation of a one dimensional
chain along [0 0 1]. The dihedral angle between the ‘‘best’’ planes
in 2 (A: Pd1/Cl1/N3/P1/P2, B: Pd2/Cl2/S1/N2/P3 and C: N1/N3/
N4/C1/C2/C3) are 112° (A, B), 107° (A, C) and 12° (B, C).
There is an intramolecular hydrogen bridge between the exocy-
clic NH-group and the carbonyl oxygen moiety (N2–H1ꢀ ꢀ ꢀO1:
266.1(4) pm).
[35] M. Ghassemzadeh, L. Fallahnedjad, M.M. Heravi, B. Neumüller, Polyhedron 27
(2008) 1655.
[36] M. Ghassemzadeh, M. Bolourtchian, S. Chitsaz, B. Neumüller, M.M. Heravi, Eur.
J. Inorg. Chem. (2000) 1877.
[37] G.M. Sheldrick, SHELXS-97, Universität Göttingen, 1997.
[38] G.M. Sheldrick, SHELXL-97, Göttingen, 1997.
4. Conclusion
In conclusion, we have synthesized and characterized two
mononuclear and one binuclear complex containing neutral, mono