3176
C. Dai et al. / Bioorg. Med. Chem. Lett. 21 (2011) 3172–3176
Table 6
ring (i.e., 48) give rise to compounds with significantly improved
cellular activities.
Selectivity profile of inhibitor 1, 28, and 45
Ki (nM)
1
28
45
References and notes
TACE
0.8
5
1
MMP1
MMP2
MMP3
MMP7
MMP9
MMP13
MMP14
ADAM10
>100 000
43,660
—
3769
88,420
3300
1148
166
>40,000
20,500
>40,000
18,100
>40,000
>40,000
>40,000
1350
>40,000
>40,000
>40,000
13,500
10,100
14,100
16,400
120
1. Bemelmans, M. H. A.; van Tits, L. J.; Buurman, W. A. Crit. Rev. Immunol. 1996, 16,
1.
2. (a) Newton, R. C.; Decicco, C. P. J. Med. Chem. 1999, 42, 635; (b) Hasegawa, A.;
Takasaki, W.; Greene, M. I.; Murali, R. Mini-Rev. Med. Chem. 2001, 1, 5; (c)
Reimold, A. M. Curr. Drug Targets Inflammation & Allergy 2002, 1, 377; (d)
Wagner, G.; Laufer, S. Med. Res. Rev. 2006, 6, 1.
3. Black, R. A.; Rauch, C. T.; Kozlosky, C. J.; Peschon, J. J.; Slack, J. L.; Wolfson, M. F.;
Castner, B. J.; Stocking, K. L.; Reddy, P.; Srinivasan, S.; Nelson, N.; Boiani, N.;
Schooley, K. A.; Gerhart, M.; Davis, R.; Fitzner, J. N.; Johnson, R. S.; Paxton, R. J.;
March, Ca. J.; Cerretti, D. P. Nature 1997, 385, 729.
4. (a) Nelson, F. C.; Zask, A. Expert Opin. Invest. Drugs 1999, 8, 3; (b) Newton, R. C.;
Solomon, K. A.; Covington, M. B.; Decicco, C. P.; Haley, P. J.; Friedman, S. M.;
Vaddi, K. Ann. Rheum. Dis. 2001, 60, 25; (c) Moss, M. L.; White, J. M.; Lambert, M.
H.; Andrews, R. C. Drug Discovery Today 2001, 6, 417; (d) Skotnicki, J. S.;
DiGrandi, M. J.; Levin, J. I. Curr. Opin. Drug Discov. Devel. 2003, 6, 742; (e)
Skotnicki, J. S.; Levin, J. I. Ann. Rep. Med. Chem. 2003, 38, 153.
5. (a) Kenny, P. A. Expert Opin. Ther. Targets 2007, 11, 1287; (b) Kenny, P. A.;
Bissell, M. J. Clin. Invest. 2007, 117, 337; (c) Kenny, P. A. Differentiation 2007, 75,
800.
6. (a) Levin, J. I. Curr. Top. Med. Chem. 2004, 4, 1289; (b) DasGupta, S.; Murumkar,
P. R.; Giridhar, R.; Yadav, M. Bioorg. Med. Chem. 2009, 17, 444; (c) Duan, J. J.-W.;
Lu, Z.; Xue, C.-B.; He, X.; Seng, J. L.; Roderick, J. J.; Wasserman, Z. R.; Liu, R.-Q.;
Covington, M. B.; Magolda, R. L.; Newton, R. C.; Trzaskos, J. M.; Decicco, C. P.
Bioorg. Med. Chem. Lett. 2003, 13, 2035; (d) Zask, A.; Kaplan, J.; Du, X.;
MacEwan, G.; Sandanayaka, V.; Eudy, N.; Levin, J.; Jin, G.; Xu, J.; Cummons, T.;
Barone, D.; Ayral-Kaloustian, S.; Skotnicki, J. Bioorg. Med. Chem. Lett. 2005, 15,
1641; (e) Levin, J. I.; Chen, J. M.; Laakso, L. M.; Du, M.; Du, X.; Venkatesan, A. M.;
Sandanayaka, V.; Zask, A.; Xu, J.; Xu, W.; Zhang, Y.; Skotnicki, J. S. Bioorg. Med.
Chem. Lett. 2005, 15, 4345.
7. (a) Sheppeck, J. E.; Gilmore, J. L.; Yang, A.; Chen, X.-T.; Xue, C.-B.; Roderick, J.;
Liu, R.-Q.; Covington, M. B.; Decicco, C. P.; Duan, J. J.-W. Bioorg. Med. Chem. Lett.
2007, 17, 1413; (b) Sheppeck, J. E., II; Gilmore, J. L.; Tebben, A.; Xue, C.-B.; Liu,
R.-Q.; Decicco, C. P.; Duan, J. J.-W. Bioorg. Med. Chem. Lett. 2007, 17, 2769; (c) Yu,
W.; Guo, Z.; Orth, P.; Madison, V.; Chen, L.; Dai, C.; Feltz, R. J.; Girijavallabhan, V.
M.; Kim, S. H.; Kozlowski, J. A.; Lavey, B. J.; Li, D.; Lundell, D.; Niu, X.; Piwinski, J.
J.; Popovici-Muller, J.; Rizvi, R.; Rosner, K. E.; Shankar, B. B.; Shih, N.-Y.;
Siddiqui, M. A.; Sun, J.; Tong, L.; Umland, S.; Wong, M. K. C.; Yang, D.-Y.; Zhou,
G. Bioorg. Med. Chem. Lett. 2010, 20, 1877.
8. Duan, J. J.-W.; Chen, L.; Lu, Z.; Jiang, B.; Asakawa, N.; Sheppeck, J. E.; Liu, R.-Q.;
Covington, M. B.; Pitts, W.; Kim, S.-H.; Decicco, C. P. Bioorg. Med. Chem. Lett.
2007, 17, 266.
9. Govinda, R. B.; Bandarage, U. K.; Wang, T.; Come, J. H.; Perola, E.; Wei, Y.; Tian,
S.-K.; Saunders, J. O. Bioorg. Med. Chem. Lett. 2007, 17, 2250.
10. Rosner, K. E.; Guo, Z.; Orth, P.; Shipps, G. W.; Belanger, D. B.; Chan, T. -Y.;
Curran, P. J.; Dai, C.; Deng, Y.; Girijavallabhan, V. M.; Hong, L.; Lavey, B. J.; Lee, J.
F.; Li, D.; Liu, Z.; Popovici-Muller, J.; Ting, P. C.; Vaccaro, H.; Wang, L.; Wang, T.;
Yu, W.; Zhou, G.; Niu, X.; Sun, J.; Kozlowski, J. A.; Lundell, D. J.; Madison, V.;
McKittrick, B.; Piwinski, J. J.; Shih, N.-Y.; Arshad, S. M.; Strickland, C. O. Bioorg.
Med. Chem. Lett. 2010, 20, 1189.
11. Li, D.; Popovici-Muller, J.; Belanger, D. B.; Caldwell, J.; Dai, C.; David, M.;
Girijavallabhan, V. M.; Lavey, B. J.; Lee, J. F.; Liu, Z.; Mazzola, R.; Rizvi, R.;
Rosner, K. E.; Shankar, B.; Spitler, J.; Ting, P. C.; Vaccaro, H.; Yu, W.; Zhou, G.;
Zhu, Z.; Niu, X.; Sun, J.; Guo, Z.; Orth, P.; Chen, S.; Kozlowski, J. A.; Lundell, D. J.;
Madison, V.; McKittrick, B.; Piwinski, J. J.; Shih, N.-Y.; Shipps, G. W.; Siddiqui,
M. A.; Strickland, C. O. Bioorg. Med. Chem. Lett. 2010, 20, 4812.
or MeSSMe quenching afforded compounds 34a and 38a, respec-
tively. Further oxidation of 38a with m-CPBA gave methyl sulfone
38b (Scheme 2). These building blocks were then readily deprotec-
ted and coupled with tartrate half amide/acid 23 to provide 5-
substituted-2-N-methylaminothiazole based tartrate diamides
34–38 (Table 4) by following the same procedure as in Scheme 1.
As shown in Table 4, introducing methyl (34), cyclopropyl (35),
aryl (36), or cyano (37) groups at the 5-position of the thiazole ring
slightly increases the potencies of the inhibitors versus 24. The
methylsulfonyl group at 5-position in compound 38 is the most
effective one, showing approximately 10-fold improvement in
both the biochemical and cellular activities (0.4 and 720 nM,
respectively) versus compound 24 (7 and 5799 nM, respectively).
X-ray crystallography15 shows that the methylsulfonyl group
makes hydrogen bonding interactions with a water molecule
which in turn, makes hydrogen bonding interactions with Ser355
and Pro356 of the protein (Fig. 2). However, incorporation of the
5-methanesulfonyl group results in loss of oral exposure.
The effect of pyrrolidine ring modifications was also investi-
gated. As shown in Table 5, simply adding a methyl group at
2- or 4-position (39 and 40) or 4,4-difluoro substitutions (41) on
pyrrolidine does not have much effect on the TACE activities of
the resulting tartrate diamide compound. However, when the
pyrrolidine ring is flattened with a double bond (42), its potency
is significantly improved (Ki = 0.6 nM). Therefore, cyclopropyl and
phenyl fusions to the pyrrolidine ring were subsequently explored.
It is interesting that the cis fusion compound (43) is highly potent
(Ki = 1 nM) but the corresponding trans compound (44) loses
activity (Ki = 531 nM). As anticipated, when the pyrrolidine ring
is fused with phenyl (45), the corresponding compound gives rise
to much improved enzymatic and cellular activities (Ki = 1 nM, cell
IC50 = 416 nM) comparing to compound 24. Fluoro substitutions on
the phenyl ring are well tolerated (46, 47). Finally, fusion with a
2-aminopyrimidine ring results in compound 48 with good cellular
activity (cell IC50 = 257 nM). However, these compounds all exhibit
low oral exposures in rat.
12. Description of the rat PK studies: Following an overnight fast, two Male
Sprague–Dawley rats (Charles River, Co.) were dosed orally at a dose of 10 mg/
kg. Blood was collected into heparin-containing tubes serially from each
animal at 0.5, 1, 2, 3, 4 and 6 h post-dosing and centrifuged to generate plasma.
Samples at each time point collected from two rats were pooled for LC/MS/MS
analysis. For further experimental details of the rapid rat assay, see
Korfmacher, W. A.; Cox, K. A.; Ng, K. J.; Veals, J.; Hsieh, Y.; Wainhaus, S.;
Broske, L.; Prelusky, D.; Nomeir, A.; White, R. E. Rapid Commun. Mass Spectrom.
2001, 15, 335.
TACE inhibitors of this class are very selective against related
MMPs, as exemplified by compound 28 and 45 (Table 6). Their
selectivity profiles are similar to that of compound 1.
In summary, we have further optimized the tartrate based TACE
inhibitors by incorporating 2-heteroaryl substituted pyrrolidines
as the left hand side amine groups and by pyrrolidine ring modifi-
cations. In particular, 2-(N-alkylamino)thiazole containing com-
pounds afford potent and selective TACE inhibitors with
improved oral bioavailability (i.e., compounds 24–29 show more
than 10-fold AUC improvement). On the other hand, 5-methylsulf-
one substitution on thiazole (i.e., 38) and flattening the pyrrolidine
13. (a) Guo, Z.; Orth, P.; Zhu, Z.; Mazzola, R. D.; Chan, T.-Y.; Vaccaro, H. A.;
McKittrick, B.; Kozlowski, J. A.; Lavey, B. J.; Zhou, G.; Paliwal, S.; Wong, S.-C.;
Shih, N.-Y; Ting, P. C.; Rosner, K. E.; Shipps, G. W., Jr.; Siddiqui, M. A.; Belanger,
D. B.; Dai, C.; Li, D.; Girijavallabhan, V. M.; Popovici-Müller, J.; Yu, W.; Zhao, L.
U.S. Patent 7652020 B2.; (b) 7,8-Dimethoxy-1-phenyl-3-benzazepine was
prepared via the method of Neumeyer et al., J. Med. Chem. 1991, 34, 3366 and
references cited therein.
14. Chen, P.; Cheng, P. T. W.; Spegel, S. H.; Zahler, R.; Wang, X.; Thottathil, J.;
Barrish, J. C.; Polniaszek, R. P. Tetrahedron Lett. 1997, 38, 3175.
15. RCSB protein data bank (PDB) deposition number 3O64.