N. Iwai et al. / Bioorg. Med. Chem. Lett. 21 (2011) 2812–2815
2815
Protocol for PBGS assay
Alaremycin
8 µg/ml PBGS ( pf HemB2)
derivative
0.1 mM ~ 10 mM
buffer A (50 mM Na-HEPES, 5 mM MgCl2, pH 8.0)
37 °C 15 min
5 mM ALA
1/10 vol. 50% trichloroacetic acid
4 °C 15 min
Figure 5. PBGS activity of compounds (R)-5, (S)-5, 10 and 11.
15000 rpm, 10 min at 4 °C
Sup
same vol. of Ehrlich's reagent
the PBGS inhibitory activity of compounds 4 and 8 have been im-
proved up to about 100 and/or 50 times more than that of
alaremycin.
(p-dimethylaminobenzaldehyde)
incubation 15 min at rt
In conclusion, we have established the synthetic route for CF3–
alaremycin derivatives. Further, we have found the PBGS inhibitory
activity of obtained CF3–alaremycin derivatives have been in-
creased up to about 50 and/or 100 times more than that of alare-
mycin. This is the first example for the preparation and the
antibacterial activity for the porphobilinogen synthase (PBGS) of
CF3–alaremycin derivatives.
Abs. 555 nm
Figure 2. The IC50 values using PBGS assay.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Awa, Y.; Iwai, N.; Ueda, K.; Suzuki, S.; Asano, S.; Yamagishi, J.; Nagai, K.; Wachi,
M. Biosci. Biotechnol. Biochem. 2005, 69, 1721.
2. Frere, F.; Nentwich, M.; Gracond, S.; Heinz, D. W.; Neier, R.; Frankenberg, N.
Biochemistry 2006, 45, 8243.
3. Jaffe, E. K. J. Bioenerg. Biomembr. 1995, 27, 169.
Figure 3. PBGS activity of compounds (R)-3, (S)-3 and 1.
4. Senior, N. M.; Brocklehurst, K.; Cooper, J. B.; Wood, S. P.; Erskine, P.; Shoolingin-
Jordan, P. M.; Thomas, P. G.; Warren, M. J. Biochem. J. 1996, 320, 401.
5. Frankenberg, N.; Kittel, T.; Hungerer, C.; Romling, U.; Jahn, D. Mol. Gen. Genet.
1998, 257, 485.
6. Stauffer, F.; Zizzari, E.; Engeloch-Jarret, C.; Faurite, J.-P.; Bobalova, J.; Neier, R.
Chem. Biol. Chem. 2001, 2, 343.
Table 1
IC50 values of compounds
7. Frankenberg, N.; Erskine, P. T.; Cooper, J. B.; Shoolingin-Jordan, P. M.; Jahn, D.;
Heinz, D. W. J. Mol. Biol. 1999, 289, 591.
8. Frere, F.; Schubert, W.-D.; Stauffer, F.; Frankenberg, N.; Neier, R.; Jahn, D.;
Heinz, D. W. J. Mol. Biol. 2002, 320, 237.
9. Jarret, C.; Stauffer, F.; Henz, M. E.; Marty, M.; Luond, R. M.; Bobalova, J.;
Schurmann, P.; Neier, R. Chem. Biol. 2000, 7, 185.
10. Kervinen, J.; Jaffe, E. K.; Stauffer, F.; Neier, R.; Wlodawer, A.; Zdanov, A.
Biochemistry 2001, 40, 8227.
Compound no.
Activity IC50 (mM)
Compound no.
Activity IC50 (mM)
1
2.5
0.7
1.1
0.022
4.1
7
8
10
11
0.9
0.051
8.0
0.5
1.3
(R)-3
(S)-3
4
(R)-5
(S)-5
12
3.0
Alaremycin
2.6
11. Erskine, P. T.; Newbold, R.; Brindley, A. A.; Wood, S. P.; Shoolingin-Jordan, P. M.;
Warren, M. J.; Cooper, J. B. J. Mol. Biol. 2001, 312, 133.
12. Heinemann, I. U.; Schulz, C.; Schubert, W. D.; Heinz, D. W.; Wang, Y. G.;
Kobayashi, Y.; Awa, Y.; Wachi, M.; Jahn, D.; Jahn, M. Antimicrob. Agents
Chemother. 2010, 54, 267.
13. Asymmetric Fluoroorganic Chemistry; Ramachandran, P. V., Ed.: ACS symposium
series 746; ACS: Washington DC, 2000.
14. Enantiocontrolled Synthesis of Fluoro-Organic Compounds; Soloshonok, V. A., Ed.;
John Wiley & Sons: NY, 1999.
15. Fluorine-containing Amino Acids; Kukhar, V. P., Soloshonok, V. A., Eds.; John
Wiley & Sons: NY, 1995.
16. Welch, J. T.; Eswarakrishnan, S. Fluorine in Bioorganic Chemistry; John Wiley &
Sons: NY, 1991.
17. Wan, Y.; Wachi, M.; Kobayashi, Y. Synlett 2008, 481.
18. Frankenberg, N.; Heinz, D. W.; Jahn, D. Biochemistry 1999, 38, 13968.
Figure 4. PBGS activity of compounds 4, 7 and 8.