Journal of the American Chemical Society
COMMUNICATION
Cornebise, M.; Yoon, K.; Parkin, G.; Rheingold, A. L. Organometallics
98, 455–462. (f) Louie, J. Curr. Org. Chem. 2005, 9, 605–623. (g) Jiang,
Z.; Xiao, T.; Kuznetsov, V. L.; Edwards, P. P. Philos. Trans. R. Soc.
AꢀMath. Phys. Eng. Sci. 2010, 368, 3343–3364. (h) Darensbourg, D. J.
Inorg. Chem. 2010, 49, 10765–10780.
(20) (a) Jessop, P. G.; Joꢀo, F.; Tai, C.-C. Coord. Chem. Rev. 2004,
248, 2425–2442. (b) Himeda, Y. Eur. J. Inorg. Chem. 2007, 3927–3941.
(c) Enthaler, S.; von Langermann, J.; Schmidt, T. Energy Environ. Sci.
2010, 3, 1207–1217.
(21) (a) Darensbourg, D. J.; Mackiewicz, R. M.; Phelps, A. L.; Billo-
deaux, D. R. Acc. Chem. Res. 2004, 37, 836–844. (b) Coates, G. W.; Moore,
D. R. Angew. Chem. Int. Ed. 2004, 43, 6618–6639. (c) Darensbourg, D. J.;
Holtcamp, M. W. Coord. Chem. Rev. 1996, 153, 155–174. (d) Chisholm,
M. H.; Zhou, Z. J. Mater. Chem. 2004, 14, 3081–3092.
1995, 14, 274–288.
0
(4) For more recent [TpRR ]ZnH derivatives (aꢀd) and other well-
defined mononuclear zinc hydride complexes (e,f) see: (a) Bergquist,
C.; Parkin, G. Inorg. Chem. 1999, 38, 422–423. (b) Bergquist, C.;
Koutcher, L.; Vaught, A. L.; Parkin, G. Inorg. Chem. 2002, 41,
625–627. (c) Kl€aui, W.; Schilde, U.; Schmidt, M. Inorg. Chem. 1997,
36, 1598–1601. (d) Rombach, M.; Brombacher, H.; Vahrenkamp, H.
Eur. J. Inorg. Chem. 2002, 153–159. (e) Mukherjee, D.; Ellern, A.; Sadow,
A. D. J. Am. Chem. Soc. 2010, 132, 7582–7583. (f) Spielmann, J.; Piesik,
D.; Wittkamp, B.; Jansen, G.; Harder, S. Chem. Commun. 2009,
3455–3456.
(5) Aldridge, S.; Downs, A. J. Chem. Rev. 2001, 101, 3305–3365.
(6) For examples of complexes with ZnꢀHꢀZn bridges, see:
(a) Zhu, Z.; Fettinger, J. C.; Olmstead, M. M.; Power, P. P. Organome-
tallics 2009, 28, 2091–2095. (b) Hao, H.; Cui, C.; Roesky, H. W.; Bai, G.;
Schmidt, H.-G.; Noltemeyer, M. Chem. Commun. 2001, 1118–1119.
(c) Coles, M. P.; El-Hamruni, S. M.; Smith, J. D.; Hitchcock, P. B. Angew.
Chem. Int. Ed. 2008, 47, 10147–10150. (d) Fedushkin, I. L.; Eremenko,
O. V.; Skatova, A. A.; Piskunov, A. V.; Fukin, G. K.; Ketkov, S. Y.; Irran,
E.; Schumann, H. Organometallics 2009, 28, 3863–3868. (e) Zhu, Z.;
Wright, R. J.; Olmstead, M. M.; Rivard, E.; Brynda, M.; Power, P. P.
Angew. Chem. Int. Ed. 2006, 45, 5807–5810.
(7) Cambridge Structural Database, Version 5.32. Allen, F. H.;
Kennard, O. Chemical Design Automation News 1993, 8, 31–37.
(8) For examples of multinuclear zinc hydride complexes that
incorporate alkyl or aryl ligands, see ref 6c and the following:
(a) Kahnes, M.; G€orls, H.; Gonzꢀalez, L.; Westerhausen, M.
Organometallics 2010, 29, 3098–3108. (b) Zhu, Z.; Brynda, M.;
Wright, R. J.; Fischer, R. C.; Merrill, W. A.; Rivard, E.; Wolf, R.; Fettinger,
J. C.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 2007, 129,
10847–10857. (c) Lennartson, A.; Hakansson, M.; Jagner, S. Angew. Chem.,
Int. Ed. 2007, 46, 6678–6680. (d) de Koning, A. J.; Boersma, J.; van der Kerk,
G. J. M. J. Organomet. Chem. 1978, 155, C5–C7.
(22) (a) Yin, X.; Moss, J. R. Coord. Chem. Rev. 1999, 181, 27–59. (b)
Leitner, W. Coord. Chem. Rev. 1996, 153, 257–284.
(23) Dell’Amico, D. B.; Calderazzo, F.; Labella, L.; Marchetti, F.;
Pampaloni, G. Chem. Rev. 2003, 103, 3857–3897.
(24) (a) Tsuda, T.; Washita, H.; Saegusa, T. J. Chem. Soc., Chem.
Commun. 1977, 468–469. (b) Sita, L. R.; Babcock, J. R.; Xi, R. J. Am.
Chem. Soc. 1996, 118, 10912–10913. (c) Wannagat, U.; Kuckertz, H.;
Kr€uger, C.; Pump, J. Z. Anorg. Allg. Chem. 1964, 333, 54–61. (d) Cheng,
M.; Moore, D. R.; Reczek, J. J.; Chamberlain, B. M.; Lobkovsky, E. B.;
Coates, G. W. J. Am. Chem. Soc. 2001, 123, 8738–8749. (e) Andersen,
R. A. Inorg. Chem. 1979, 18, 2928–2932. (f) Phull, H.; Alberti, D.;
Korobkov, I.; Gambarotta, S.; Budzelaar, P. H. M. Angew. Chem. Int. Ed.
2006, 45, 5331–5334.
(25) For a recent example of isocyanate formation from the reaction
of a cyclic disilylamide derivative with CO2, see: Stewart, C. A.; Dickie,
D. A.; Parkes, M. V.; Saria, J. A.; Kemp, R. A. Inorg. Chem. 2010, 49,
11133–11141.
(26) The formation of strong SiꢀO bonds has also been proposed to
be a driving force for the conversion of CO ligands to CNR ligands by
treatment with Li[Me3SiNR]: Sattler, W.; Parkin, G. Chem. Commun.
2009, 7566–7568.
(9) MeZnH has recently been observed in the gas phase: Flory,
M. A.; Apponi, A. J.; Zack, L. N.; Ziurys, L. M. J. Am. Chem. Soc. 2010,
132, 17186–17192.
(27) Tang, Y.; Felix, A. M.; Boro, B. J.; Zakharov, L. N.; Rheingold,
A. L.; Kemp, R. A. Polyhedron 2005, 24, 1093–1100.
(28) (a) Marciniec, B.; Maciejewski, H. Coord. Chem. Rev. 2001,
223, 301–335. (b) Boyle, T. J.; Ottley, L. A. M. Chem. Rev. 2008,
108, 1896–1917. (c) Wolczanski, P. T. Chem. Commun. 2009, 740–757.
(29) (a) Fedotova, Y. V.; Zhezlova, E. V.; Mushtina, T. G.; Kornev,
A. N.; Chesnokova, T. A.; Fukin, G. K.; Zakharov, L. N.; Domrachev, G. A.
Russ. Chem. Bull. 2003, 52, 414–420. (b) Kornev, A. N.; Chesnokova,
T. A.; Zhezlova, E. V.; Zakharov, L. N.; Fukin, G. K.; Kursky, Y. A.;
Domrachev, G. A.; Lickiss, P. D. J. Organomet. Chem. 1999, 587,
113–121. (c) Radkov, Y. F.; Fedorova, E. A.; Khorshev, S. Y.; Kalinina,
G. S.; Bochkarev, M. N.; Razuvaev, G. A. Zh. Obsh. Khim. 1986,
56, 386–389. (d) Kornev, A. N.; Chesnokova, T. A.; Zhezlova, E. V.; Fukin,
G. K.; Zakharov, L. N.; Domrachev, G. A. Dokl. Chem. 1999, 369, 274–277.
(30) For examples of reversible insertion of CO2 into MꢀOR
bonds, see: (a) Tam, E. C. Y.; Johnstone, N. C.; Ferro, L.; Hitchcock,
P. B.; Fulton, J. R. Inorg. Chem. 2009, 48, 8971–8976. (b) Simpson,
R. D.; Bergman, R. G. Organometallics 1992, 11, 4306–4315. (c) Tsuda,
T.; Saegusa, T. Inorg. Chem. 1972, 11, 2561–2563. (d) Aresta, M.;
Dibenedetto, A.; Pastore, C. Inorg. Chem. 2003, 42, 3256–3261. (e) Mandal,
S. K.; Ho, D. M.; Orchin, M. Organometallics 1993, 12, 1714–1719. (f)
Ballivet-Tkatchenko, D.; Chermette, H.; Plasseraud, L.; Walter, O. Dalton
Trans. 2006, 5167–5175.
(10) de Castro, V. D.; de Lima, G. M.; Filgueiras, C. A. L.; Gambardella,
M. T. P. J. Mol. Struct. 2002, 609, 199–203.
(11) k3-Coordination of the [Tptm] ligand is indicated by the
1
observation of a 2:1 ratio of pyridyl groups in the H NMR spectrum
at e ꢀ10 °C.
(12) [k4-Tptm]ZnOSiPh3 may be likewise obtained by a similar
procedure employing Ph3SiOH.
(13) Trimethylsiloxide complexes of zinc are not common, and the
only structurally characterized one listed in the Cambridge Structural
0
Databaseis[TpR,R ]ZnOSiMe3: Chisholm, M. H.; Eilerts, N. W.; Huffman,
J. C.; Iyer, S. S.; Pacold, M.; Phomphrai, K. J. Am. Chem. Soc. 2000,
122, 11845–11854.
(14) For comparison, the mean ZnꢀH bond length for terminal
hydride compounds listed in the Cambridge Structural Database13 is 1.55 Å.
(15) [k4-Tptm]ZnX (X = Cl, Br) have been recently reported:
Kitano, K.; Kuwamura, N.; Tanaka, R.; Santo, R.; Nishioka, T.; Ichimura,
A.; Kinoshita, I. Chem. Commun. 2008, 1314–1316.
(16) [k4-Tptm]ZnX (X = Cl, I) can also be obtained via treatment of
[k4-Tptm]Li with ZnX2 (Supporting Information).
(17) Furthermore, [k4-Tptm]ZnO2CMe can be obtained via reac-
tion of [k3-Tptm]ZnH with MeCO2H.
(31) In this regard, we have also observed that CO2 promotes
formation of [k4-Tptm]ZnX (X = Cl, Br) upon treatment of [k4-Tptm]-
ZnOSiR3 (R = Me, Ph) with Me3SiX.
(18) For CO2 insertion reactions of multinuclear zinc hydride
complexes, see: (a) Merz, K.; Moreno, M.; L€offler, E.; Khodeir, L.
Rittermeier, A.; Fink, K.; Kotsis, K.; Muhler, M.; Driess, M.Chem. Commun.
2008, 73–75. (b) Schulz, S.; Eisenmann, T.; Schmidt, S.; Bl€aser, D.;
Westphal, U.; Boese, R. Chem. Commun. 2010, 46, 7226–7228.
(19) (a) Aresta, M.; Dibenedetto, A. Dalton Trans. 2007,
2975–2992. (b) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy
Environ. Sci. 2010, 3, 43–81. (c) Arakawa, H.; et al. Chem. Rev. 2001,
101, 953–996. (d) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007,
107, 2365–2387. (e) Aresta, M.; Dibenedetto, A. Catal. Today 2004,
(32) [k4-Tptm]ZnCl also exhibits k4-coordination; see ref 15.
(33) The observation of equivalent pyridyl groups for [k4-Tptm]-
ZnO2CR (R = H, Me) implies that access to the freely rotating k1-O2CR
isomer is facile.
(34) Accordingly, DFT studies indicate that the difference in energies
between [k3-Tptm]ZnX and [k4-Tptm]ZnX (X = F, Cl, Br, I, H)
correlates well with the NBO charges on zinc (Supporting Information).
9711
dx.doi.org/10.1021/ja2035706 |J. Am. Chem. Soc. 2011, 133, 9708–9711