ORGANIC
LETTERS
2011
Vol. 13, No. 14
3560–3563
Nickel-Catalyzed Synthesis of
1,3,5-Trisubstituted Hydantoins from
Acrylates and Isocyanates
Tomoya Miura, Yusuke Mikano, and Masahiro Murakami*
Department of Synthetic Chemistry and Biological Chemistry, Kyoto University,
Katsura, Kyoto 615-8510, Japan
Received April 11, 2011
ABSTRACT
One molecule of acrylate reacts with two molecules of isocyanate in the presence of a nickel(0)/SIPr catalyst to give a 1,3,5-trisubstituted
hydantoin. Two processes operate in sequence, the first, regioselective formation of N-substituted fumaramate from acrylate and isocyanate and,
the second, ring closure of the fumaramate with incorporation of another molecule of isocyanate.
A hydantoin (imidazolidine-2,4-dione) skeleton1 is an
important structural motif found in a number of pharma-
ceutically active compounds,2 such as phenytoin and fo-
sphenytoin which are in practical use for the treatment of
epilepsy. In addition, substituted hydantoins act as valu-
able intermediates for the synthesis of enantiomerically
pure amino acids through dynamic kinetic resolution using
hydantoinase biocatalysis.3 Therefore, the development
of efficient methods for rapid construction of hydantoin
skeletons from simple and inexpensive starting materials
is highly desired. Various preparative methods based on
transition-metal catalysts have been reported. A formal
intermolecular [2 þ 2 þ 1] cycloaddition reaction of one
molecule of phenylacetylene and two molecules of isocya-
nate is catalyzed by iron,4 ruthenium,5 and manganese6
complexes, leading to the formation of 5-benzylidene-
1,3-disubstituted hydantoins. A copper-catalyzed CꢀH
R-amination reaction of esters with di-tert-butyldiaziridi-
none affords 1,3,5-trisubstituted hydantoins.7 A palladium-
catalyzed carbonylation reaction of aldehydes with ureas
and carbon monoxide furnishes 5-, 3,5-, and 1,3,5-substi-
tuted hydantoins.8 However, there has been no report
on the hydantoin synthesis starting from acrylates and
isocyanates. We now report the synthesis of 1,3,5-trisub-
stituted hydantoins9 from one molecule of acrylate and
two molecules of isocyanate by use of nickel catalysis.
€
(1) For a review of hydantoin chemistry, see: Meusel, M.; Gutschow,
M. Org. Prep. Proced. Int. 2004, 36, 391.
(6) Kuninobu, Y.; Kikuchi, K.; Takai, K. Chem. Lett. 2008, 37, 740.
(7) Zhao, B.; Du, H.; Shi, Y. J. Am. Chem. Soc. 2008, 130, 7220.
(8) Beller, M.; Eckert, M.; Moradi, W. A.; Neumann, H. Angew.
Chem., Int. Ed. 1999, 38, 1454.
(2) (a) Last-Barney, K.; Davidson, W.; Cardozo, M.; Frye, L. L.;
Grygon, C. A.; Hopkins, J. L.; Jeanfavre, D. D.; Pav, S.; Qian, C.;
Stevenson, J. M.; Tong, L.; Zindell, R.; Kelly, T. A. J. Am. Chem. Soc.
2001, 123, 5643. (b) Stilz, H. U.; Guba, W.; Jablonka, B.; Just, M.;
(9) For recent examples of the synthesis of 1,3,5-substituted hydan-
toins without the use of transition-metal catalysts, see: (a) Sim, M. M.;
Ganesan, A. J. Org. Chem. 1997, 62, 3230. (b) Matthews, J.; Rivero,
R. A. J. Org. Chem. 1997, 62, 6090. (c) Kim, S. W.; Ahn, S. Y.; Koh, J. S.;
Lee, J. H.; Ro, S.; Cho, H. Y. Tetrahedron Lett. 1997, 38, 4603. (d)
Hulme, C.; Ma, L.; Romano, J. J.; Morton, G.; Tang, S.-Y.; Cherrier,
M.-P.; Choi, S.; Salvino, J.; Labaudiniere, R. Tetrahedron Lett. 2000, 41,
1889. (e) Zhang, W.; Lu, Y. Org. Lett. 2003, 5, 2555. (f) Ignacio, J. M.;
Macho, S.; Marcaccini, S.; Pepino, R.; Torroba, T. Synlett 2005, 3051.
(g) Volonterio, A.; de Arellano, C. R.; Zanda, M. J. Org. Chem. 2005, 70,
2161. (h) Olimpieri, F.; Volonterio, A.; Zanda, M. Synlett 2008, 3016. (i)
Attanasi, O. A.; De Crescentini, L.; Favi, G.; Nicolini, S.; Perrulli, F. R.;
Santeusanio, S. Org. Lett. 2011, 13, 353.
€
Klingler, O.; Konig, W.; Wehner, V.; Zoller, G. J. Med. Chem. 2001, 44,
ꢀ
ꢀ
ꢀ
ꢀ
1158. (c) Somsak, L.; Kovacs, L.; Toth, M.; Osz, E.; Szilagyi, L.;
€
ꢀ
ꢀ
Gyorgydeak, Z.; Dinya, Z.; Docsa, T.; Toth, B.; Gergely, P. J. Med.
Chem. 2001, 44, 2843. (d) Thenmozhiyal, J. C.; Wong, P. T.-H.; Chui,
W.-K. J. Med. Chem. 2004, 47, 1527. (e) Muccioli, G. G.; Fazio, N.;
Scriba, G. K. E.; Poppitz, W.; Cannata, F.; Poupaert, J. H.; Wouters, J.;
Lambert, D. M. J. Med. Chem. 2006, 49, 417.
(3) Burton, S. G.; Dorrington, R. A. Tetrahedron: Asymmetry 2004,
15, 2737.
(4) Ohshiro, Y.; Kinugasa, K.; Minami, T.; Agawa, T. J. Org. Chem.
1970, 35, 2136.
€
(5) Suss-Fink, G.; Schmidt, G. F.; Herrmann, G. Chem. Ber. 1987,
120, 1451.
(10) Miura, T.; Morimoto, M.; Murakami, M. J. Am. Chem. Soc.
2010, 132, 15836.
r
10.1021/ol200957y
Published on Web 06/14/2011
2011 American Chemical Society