exploiting the dual functionality of this system are being
investigated.
We thank the Marie Curie IIF scheme of the 7th EU
Framework Program (J.K.C.), the Walters-Kundert Charitable
Trust (J.R.N.) and the EPSRC for funding and S.P. Black for
helpful suggestions.
Notes and references
z 1ꢀ2HSO4ꢀ2MeCN: formula C56H52Cu2N8O8P2S2,
M
1218.20,
triclinic, P1, a 12.360(3), b 14.495(3), c 16.258(3) A, a 95.16(3)1,
b 91.69(3)1, g 105.61(3)1, V 2789.5(10) A3,
2, T 180(2) K,
N 60 657, Nind 12 532 (Rmerge 0.1261), R1(F) 0.0829, wR2(F2) 0.2499.
formula C114H106B2Cu4F8-
ꢀ
Z
2ꢀ2BF4ꢀ1.5H2Oꢀ2C4H10OꢀMeCN:
N9O7.50P4, M 2273.74, orthorhombic, pbam, a 12.147(2), b 18.712(4),
c 23.253(5) A, V 5285.3(18) A3, Z 2, T 180(2) K, N 51 480, Nind
6686(Rmerge 0.0377), R1(F) 0.0372, wR2(F2) 0.0967. 4ꢀ2BF4ꢀ4MeCN:
ꢀ
2513.92, triclinic, P1,
formula C124H112B2Cu4F8N12O12P4,
M
a 11.583(2), b 16.843(3), c 19.661(4) A, a 66.03(3)1, b 78.91(3)1,
g 88.69(3)1, V 3433.1(14) A3, Z 1, T 180(2) K, Nind 12 082(Rmerge
0.0748), R1(F) 0.0812, wR2(F2) 0.2437. SQUEEZE applied.
Fig. 4 CAChe MM213 model of [3+3] metallomacrocycle 5.
While in the solid state 4 crystallised in an achiral meso
form, with the two coordinating domains of each L3 arranged
on the same (cis) side of the molecule, in solution two species
are observed in a ratio of 66 : 34. The second species occurs
when the two binding domains are arranged mutually trans
across the plane of the molecule forming a helix with two
different enantiomers (P vs. M) present in a racemic (rac)
mixture.
The meso and rac species exhibit different 1H NMR spectra
(see Fig. S3–S5 in the ESIz). Two-dimensional NMR
experiments confirmed that both species were [2+2] metallo-
macrocycles, which interconvert slowly on the NMR
timescale.
1 R. F. Ludlow and S. Otto, Chem. Soc. Rev., 2008, 37, 101–108;
S. J. Cantrill, K. S. Chichak, A. J. Peters and J. F. Stoddart, Acc.
Chem. Res., 2005, 38, 1; F. Li, J. K. Clegg, L. F. Lindoy,
R. B. MacQuart and G. V. Meehan, Nat. Commun., 2011, 2, 205.
2 Q.-F. Sun, J. Iwasa, D. Ogawa, Y. Ishido, S. Sato, T. Ozeki, Y. Sei,
K. Yamaguchi and M. Fujita, Science, 2010, 328, 1144–1147;
N. Giri and S. L. James, Chem. Commun., 2011, 47, 245–247.
3 M. D. Ward, Chem. Commun., 2009, 4487–4499; C. D. Pentecost,
K. S. Chichak, A. J. Peters, G. W. V. Cave, J. F. Stoddart and
S. J. Cantrill, Angew. Chem., Int. Ed., 2007, 46, 218–222;
V. M. Cangelosi, T. G. Carter, J. L. Crossland, L. N. Zakharov
and D. W. Johnson, Inorg. Chem., 2010, 49, 9985–9992.
4 S. De, K. Mahata and M. Schmittel, Chem. Soc. Rev., 2010, 39,
1555–1575; N. Christinat, R. Scopelliti and K. Severin, Angew.
Chem., Int. Ed., 2008, 47, 1848–1852.
5 J. R. Nitschke, Acc. Chem. Res., 2007, 40, 103–112.
Substitution of Na2L2 for 1,3,5-tris(4-carboxyphenyl)
benzene (H3L4) in the presence of DBU (1,8-diazabicycloundec-
7-ene) yielded the [3+3] metallomacrocyclic product
6 V. E. Campbell and J. R. Nitschke, Synlett, 2008, 3077–3090;
Y. R. Hristova, M. M. J. Smulders, J. K. Clegg, B. Breiner and
J. R. Nitschke, Chem. Sci., 2011, 2, 638–641; I. A. Riddell, M. M.
J. Smulders, J. K. Clegg and J. R. Nitschke, Chem. Commun., 2011,
47, 457–459.
7 J. Steed, Chem. Soc. Rev., 2009, 38, 506–519; J. L. Sessler,
P. A. Gale and W.-S. Cho, Anion Receptor Chemistry, Royal
Society of Chemistry, 2006; N. Gimeno and R. Vilar, Coord.
Chem. Rev., 2006, 250, 3161; M. S. Vickers and P. D. Beer, Chem.
Soc. Rev., 2007, 36, 211–225; M. Bru, I. Alfonso, M. Bolte,
M. I. Burguete and S. V. Luis, Chem. Commun., 2011, 47, 283–285.
8 S.-M. Kuang, Z.-Z. Zhang, Q.-G. Wang and T. C. W. Mak,
J. Organomet. Chem., 1998, 558, 131–138; J. S. Field,
R. J. Haines, C. J. Parry and S. H. Sookraj, Polyhedron, 1993,
12, 2425–2428.
[Cu6L3 L4]ꢀ3BF4, 5. The product’s identity was confirmed by
3
1
ESI-MS and H NMR. Molecular modelling13 confirmed the
viability of such a structure (Fig. 4).
Each of 2, 4 and 5 can be reversibly formed and destroyed
under pH control.14 The addition of HBF4 to a solution of 4 or
5 yielded the untemplated DCL containing predominantly
[1+1] metallomacrocycle 3. Subsequent addition of DBU
reformed the templated structures as detected by 1H NMR
and ESI-MS. Such reversible pH switching between complex
structures can provide the mechanisms that lend function to
molecular machines.15
9 A. Bondi, J. Phys. Chem., 1964, 68, 441–451.
10 J. K. Clegg, L. F. Lindoy, J. C. McMurtrie and D. Schilter, Dalton
Trans., 2005, 857–864; J. K. Clegg, S. S. Iremonger, M. J. Hayter,
P. D. Southon, R. B. MacQuart, M. B. Duriska, P. Jensen,
P. Turner, K. A. Jolliffe, C. J. Kepert, G. V. Meehan and
L. F. Lindoy, Angew. Chem., Int. Ed., 2010, 49, 1075–1078.
11 S. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders and
J. F. Stoddart, Angew. Chem., Int. Ed., 2002, 41, 898–952.
12 P. T. Corbett, J. Leclaire, L. Vial, K. R. West, J.-L. Wietor, J. K.
M. Sanders and S. Otto, Chem. Rev., 2006, 106, 3652–3711.
13 CAChe WorkSystem Pro, Fujitsu Limited, Version 7.5.0.85,
2000–2006.
14 S. J. Pike and P. J. Lusby, Chem. Commun., 2010, 46, 8338–8340.
15 B. Champin, P. Mobian and J. P. Sauvage, Chem. Soc. Rev., 2007,
36, 358–366; M. J. Barrell, D. A. Leigh, P. J. Lusby and A. M.
Z. Slawin, Angew. Chem., Int. Ed., 2008, 47, 8036–8039;
J. D. Badjic, V. Balzani, A. Credi, S. Silvi and J. F. Stoddart,
Science, 2004, 303, 1845–1849.
In conclusion, a new dicopper(I) complex has been synthe-
sised, whose symmetrical structure incorporates dynamic
covalent imine bonds and coordinatively unsaturated metal
centres. Weakly coordinated solvent molecules can be displaced
with anionic ligands to form extended structures, while the
dynamic nature of the imine bonds can be exploited to form
metallomacrocylic species incorporating dianiline groups.
Employing both of these features has allowed for the anion
templated synthesis of [2+2] and [3+3] metallomacrocycles.
These metallomacrocycles can be readily and reversibly
broken down and reformed by subsequent addition of an acid
and a base. Other complex assemblies that are accessible by
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 6021–6023 6023