10.1002/anie.201907856
Angewandte Chemie International Edition
RESEARCH ARTICLE
Heinemann, F. Maschietto, M. Patra, O. Blacque, I. Ciofini, B.
Spingler, G. Gasser, Bioorg. Med. Chem. 2019, 27, 2666-2675; k)
R. Lincoln, L. Kohler, S. Monro, H. Yin, M. Stephenson, R. Zong,
A. Chouai, C. Dorsey, R. Hennigar, R. P. Thummel, S. A.
McFarland, J. Am. Chem. Soc. 2013, 135, 17161-17175; l) K. Qiu,
Y. Chen, T. W. Rees, L. Ji, H. Chao, Coord. Chem. Rev. 2019,
378, 66-86; m) E. Wachter, D. K. Heidary, B. S. Howerton, S.
Parkin, E. C. Glazer, Chem. Commun. 2012, 48, 9649-9651; n) B.
S. Howerton, D. K. Heidary, E. C. Glazer, J. Am. Chem. Soc. 2012,
134, 8324-8327.
a) Y. Sun, L. E. Joyce, N. M. Dickson, C. Turro, Chem. Commun.
2010, 46, 6759-6761; b) A. A. Holder, D. F. Zigler, M. T. Tarrago-
Trani, B. Storrie, K. J. Brewer, Inorg. Chem. 2007, 46, 4760-4762;
c) L. K. McKenzie, H. E. Bryant, J. A. Weinstein, Coord. Chem.
Rev. 2019, 379, 2-29.
a) S. Swavey, K. J. Brewer, Inorg. Chem. 2002, 41, 6196-6198; b)
W. Su, Z. Luo, S. Dong, X. Chen, J.-a. Xiao, B. Peng, P. Li,
Photodiagnosis Photodyn. Ther. 2019; c) J. D. Knoll, C. Turro,
Coord. Chem. Rev. 2015, 282-283, 110-126; d) A. M. Angeles-
Boza, P. M. Bradley, P. K. L. Fu, S. E. Wicke, J. Bacsa, K. R.
Dunbar, C. Turro, Inorg. Chem. 2004, 43, 8510-8519.
a) A. Zamora, G. Vigueras, V. Rodríguez, M. D. Santana, J. Ruiz,
Coord. Chem. Rev. 2018, 360, 34-76; b) L. K. McKenzie, I. V.
Sazanovich, E. Baggaley, M. Bonneau, V. Guerchais, J. A.
Williams, J. A. Weinstein, H. E. Bryant, Chem. Eur. J. 2017, 23,
234-238; c) H. Huang, S. Banerjee, P. J. Sadler, ChemBioChem
2018, 19, 1574-1589; d) V. Novohradsky, A. Rovira, C. Hally, A.
Galindo, G. Vigueras, A. Gandioso, M. Svitelova, R. Bresolí-
Obach, H. Kostrhunova, L. Markova, J. Kasparkova, S. Nonell, J.
Ruiz, V. Brabec, V. Marchán, Angew. Chem. Int. Ed. 2019, 58,
6311-6315.
longer wavelengths. The complexes were found to efficiently
enter cancer cells within 4 h through passive diffusion where they
accumulate in the cytoplasm. While showing no dark toxicity, they
were able to trigger cell death upon irradiation in several cancer
cell lines at a low micromolar concentration. Additionally, they
were also found to be active in 3D tumour model HeLa MCTS. As
the excited state of the complexes is quenched in an aqueous
environment, the lead compound 3 was encapsulated in a
polymer matrix. The generated nanoparticles was found to not
only have an improved water solubility and photophysical
properties but also to accumulate selectively in lysosomes,
contrary to the complex itself which accumulated in the cytoplasm.
Upon light exposure, the particles caused cell death at very low
micromolar concentrations in monolayer cancer cells as well as
3D tumour model HeLa MCTS. We strongly believe that these
compounds as well as their corresponding particles have a great
potential for the development of a new class of PDT PSs.
[4]
[5]
[6]
Acknowledgements
We thank Dr. Philippe Goldner for access to state-of-the-art laser
apparatus. This work was financially supported by an ERC
Consolidator Grant PhotoMedMet to G.G. (GA 681679), has
received support under the program “Investissements d’ Avenir”
launched by the French Government and implemented by the
ANR with the reference ANR-10-IDEX-0001-02 PSL (G.G.), the
National Science Foundation of China (Nos. 21525105 and
21778079 for H.C.) and the 973 Program (No. 2015CB856301 for
H.C.).
[7]
a) A. Loudet, K. Burgess, Chem. Rev. 2007, 107, 4891-4932; b) G.
Ulrich, R. Ziessel, A. Harriman, Angew. Chem. Int. Ed. 2008, 47,
1184-1201; c) N. Boens, V. Leen, W. Dehaen, Chem. Soc. Rev.
2012, 41, 1130-1172; d) J. Karolin, L. B.-A. Johansson, L.
Strandberg, T. Ny, J. Am. Chem. Soc. 1994, 116, 7801-7806.
A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung, K.
Burgess, Chem. Soc. Rev. 2013, 42, 77-88.
[8]
[9]
a) S. O. McDonnell, M. J. Hall, L. T. Allen, A. Byrne, W. M.
Gallagher, D. F. O'Shea, J. Am. Chem. Soc. 2005, 127, 16360-
16361; b) T. Yogo, Y. Urano, Y. Ishitsuka, F. Maniwa, T. Nagano,
J. Am. Chem. Soc. 2005, 127, 12162-12163; c) S. H. Lim, C.
Thivierge, P. Nowak-Sliwinska, J. Han, H. van den Bergh, G.
Wagnières, K. Burgess, H. B. Lee, J. Med. Chem. 2010, 53, 2865-
2874; d) S. Atilgan, Z. Ekmekci, A. L. Dogan, D. Guc, E. U.
Akkaya, Chem. Commun. 2006, 4398-4400; e) W. M. Gallagher, L.
T. Allen, C. O'Shea, T. Kenna, M. Hall, A. Gorman, J. Killoran, D.
F. O'Shea, Br. J. Cancer 2005, 92, 1702-1710; f) Y. Cakmak, S.
Kolemen, S. Duman, Y. Dede, Y. Dolen, B. Kilic, Z. Kostereli, L. T.
Yildirim, A. L. Dogan, D. Guc, E. U. Akkaya, Angew. Chem. Int. Ed.
2011, 50, 11937-11941; g) L. Huang, X. Yu, W. Wu, J. Zhao, Org.
Lett. 2012, 14, 2594-2597; h) M. A. Filatov, S. Karuthedath, P. M.
Polestshuk, S. Callaghan, K. J. Flanagan, M. Telitchko, T.
Wiesner, F. Laquai, M. O. Senge, PCCP 2018, 20, 8016-8031; i)
S. Callaghan, M. A. Filatov, H. Savoie, R. W. Boyle, M. O. Senge,
Photochem. Photobiol. Sci. 2019, 18, 495-504.
a) A. M. Potocny, J. J. Teesdale, A. Marangoz, G. P. A. Yap, J.
Rosenthal, Inorg. Chem. 2019, 58, 5042-5050; b) T. N. Singh-
Rachford, A. Haefele, R. Ziessel, F. N. Castellano, J. Am. Chem.
Soc. 2008, 130, 16164-16165; c) M. J. Ortiz, A. R. Agarrabeitia, G.
Duran-Sampedro, J. B. Prieto, T. A. Lopez, W. A. Massad, H. A.
Montejano, N. A. García, I. L. Arbeloa, Tetrahedron 2012, 68,
1153-1162; d) W. Wu, H. Guo, W. Wu, S. Ji, J. Zhao, J. Org.
Chem. 2011, 76, 7056-7064; e) Y. Chen, J. Zhao, L. Xie, H. Guo,
Q. Li, RSC Advances 2012, 2, 3942-3953; f) H. He, P.-C. Lo, S.-L.
Yeung, W.-P. Fong, D. K. Ng, Chem. Commun. 2011, 47, 4748-
4750; g) A. Gorman, J. Killoran, C. O'Shea, T. Kenna, W. M.
Gallagher, D. F. O'Shea, J. Am. Chem. Soc. 2004, 126, 10619-
10631; h) J. Killoran, L. Allen, J. F. Gallagher, W. M. Gallagher, F.
Donal, Chem. Commun. 2002, 1862-1863.
Keywords: Bioinorganic Chemistry
• Medicinal Inorganic
Chemistry • Metals in Medicine • Photodynamic Therapy •
Photosensitizers
[1]
[2]
a) D. E. Dolmans, D. Fukumura, R. K. Jain, Nat. Rev. Cancer
2003, 3, 380-387; b) A. E. O’Connor, W. M. Gallagher, A. T. Byrne,
Photochem. Photobiol. 2009, 85, 1053-1074; c) R. Bonnett, Chem.
Soc. Rev. 1995, 24, 19-33; d) S. Bonnet, Dalton Trans. 2018, 47,
10330-10343.
a) K. Plaetzer, B. Krammer, J. Berlanda, F. Berr, T. Kiesslich,
Lasers Med. Sci. 2009, 24, 259-268; b) T. J. Dougherty, C. J.
Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan,
Q. Peng, JNCI: Journal of the National Cancer Institute 1998, 90,
889-905; c) B. W. Henderson, T. J. Dougherty, Photochem.
Photobiol. 1992, 55, 145-157; d) P. Agostinis, K. Berg, K. A.
Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M.
R. Hamblin, A. Juzeniene, D. Kessel, CA Cancer J. Clin. 2011, 61,
250-281; e) S. Callaghan, M. O. Senge, Photochemical &
Photobiological Sciences 2018, 17, 1490-1514.
[10]
[3]
a) F. Heinemann, J. Karges, G. Gasser, Acc. Chem. Res. 2017,
50, 2727-2736; b) M. Jakubaszek, B. Goud, S. Ferrari, G. Gasser,
Chem. Commun. 2018, 54, 13040-13059; c) S. Monro, K. L.
Colón, H. Yin, J. Roque III, P. Konda, S. Gujar, R. P. Thummel, L.
Lilge, C. G. Cameron, S. A. McFarland, Chem. Rev. 2019, 119,
797-828; d) F. E. Poynton, S. A. Bright, S. Blasco, D. C. Williams,
J. M. Kelly, T. Gunnlaugsson, Chem. Soc. Rev. 2017, 46, 7706-
7756; e) J. Shum, P. K.-K. Leung, K. K.-W. Lo, Inorg. Chem. 2019,
58, 2231-2247; f) H. Huang, B. Yu, P. Zhang, J. Huang, Y. Chen,
G. Gasser, L. Ji, H. Chao, Angew. Chem. Int. Ed. 2015, 54, 14049-
14052; g) C. Mari, V. Pierroz, R. Rubbiani, M. Patra, J. Hess, B.
Spingler, L. Oehninger, J. Schur, I. Ott, L. Salassa, Chem. Eur. J.
2014, 20, 14421-14436; h) C. Mari, V. Pierroz, A. Leonidova, S.
Ferrari, G. Gasser, Eur. J. Inorg. Chem. 2015, 2015, 3879-3891; i)
M. Jakubaszek, J. Rossier, J. Karges, J. Delasoie, B. Goud, G.
Gasser, F. Zobi, Helv. Chim. Acta 2019, 0; j) J. Karges, F.
[11]
[12]
a) B. C. Wilson, W. P. Jeeves, D. M. Lowe, Photochem. Photobiol.
1985, 42, 153-162; b) K. Ogawa, Y. Kobuke, Anti-Cancer Agents
Med. Chem. 2008, 8, 269-279; c) S. Bonnet, Comment Inorg.
Chem. 2015, 35, 179-213.
a) H. Huang, S. Banerjee, P. J. Sadler, ChemBioChem 2018, 19,
1574-1589; b) S. Chakrabortty, B. K. Agrawalla, A. Stumper, N. M.
Vegi, S. Fischer, C. Reichardt, M. Kögler, B. Dietzek, M. Feuring-
Buske, C. Buske, S. Rau, T. Weil, J. Am. Chem. Soc. 2017, 139,
2512-2519; c) R. E. Doherty, I. V. Sazanovich, L. K. McKenzie, A.
S. Stasheuski, R. Coyle, E. Baggaley, S. Bottomley, J. A.
Weinstein, H. E. Bryant, Sci. Rep. 2016, 6, 22668.
This article is protected by copyright. All rights reserved.