Cobalt bis(dicarbollide)ꢀconjugated tyrosine
Russ.Chem.Bull., Int.Ed., Vol. 59, No. 12, December, 2010
2307
94%). 1H NMR (acetoneꢀd6), δ: 7.1—6.9 (m, 4 H); 5.26 (m, 1 H);
4.45 (m, 2 H); 4.26 (s, 4 H, CHcarb); 4.13 (t, 2 H, J = 5.0 Hz);
3.82 (t, 2 H, J = 5.0 Hz); 3.64 (t, 2 H, J = 5.0 Hz); 3.59 (t, 2 H,
J = 5.0 Hz); 3.44—3.19 (m, 1 H); 3.03 (d, 1 H, J = 14 Hz); 1.51
(s, 9 H). 11B NMR (acetoneꢀd6), δ: 23.3 (s, 1 B); 4.6 (d, 1 B); 0.5
(d, 1 B); –2.5 (d, 1 B); –4.4 (d, 2 B); –7.2 (d, 6 B); –17.3
(d, 2 B); –20.4 (d, 2 B); –22.0 (d, 1 B); –28.4 (d, 1 B). 13C{1H}
NMR (acetoneꢀd6), δ: 172.2, 158.1, 151.6, 130.8, 127.6, 114.7,
81.0, 77.9, 72.2, 69.3, 68.4, 67.5, 56.3, 53.2, 46.5, 35.2, 27.6. IR,
ν/cm–1: 2552, 1802, 1716.
Dicesium Nꢀ(tertꢀbutoxycarbonyl)ꢀOꢀ{2ꢀ[2ꢀ(uncosahydroꢀ
1´,1″,2´,2″ꢀtetracarbaꢀ3´ꢀcommoꢀcobaltaꢀclosoꢀtricosaboratoꢀ
8´ꢀoxy)ethoxy]ethoxy}ꢀLꢀtyrosinate (6). To a solution of comꢀ
pound 5 (0.16 g, 0.20 mmol) in MeOH (10 mL), a 2 М aqueous
solution of NaOH was added. The reaction mixture was stirred
for 1 h at room temperature and then acetone (40 mL) was
added. The organic layer was separated. The procedure was reꢀ
peated twice. The organic phases were combined, concentrated
to 10 mL on a rotary evaporator, and then treated with an excess
of an aqueous solution of CsCl. The formed orange precipitate
was filtered off and dried to yield the product (0.13 g, 86%).
1H NMR (acetoneꢀd6), δ: 7.17 (d, 2 H, J = 8.3 Hz); 6.84 (d, 2 H,
J = 8.3 Hz); 6.08—5.94 (m, 1 H); 4.22 (s, 4 H, CHcarb); 4.09
(t, 2 H, J = 4.6 Hz); 3.80 (t, 2 H, J = 4.6 Hz); 3.68 (t, 2 H,
J = 4.6 Hz); 3.60 (t, 2 H, J = 4.6 Hz); 3.22—3.12 (m, 2 H); 1.40
(s, 9 H). 11B NMR (acetoneꢀd6), δ: 23.4 (s, 1 B); 4.9 (d, 1 B); 0.5
(d, 1 B); –2.4 (d, 1 B); –4.4 (d, 2 B); –7.1 (d, 6 B); –17.1
(d, 2 B); –20.3 (d, 3 B); –28.5 (d, 1 B). IR, ν/cm–1: 2547 (νBH);
1715 (νC=O); 1697 (νC=O).
Cesium ethylꢀNꢀ(tertꢀbutoxycarbonyl)ꢀOꢀ{2ꢀ[2ꢀ(uncosahydroꢀ
1´,1″,2´,2″ꢀtetracarbaꢀ3´ꢀcommoꢀcobaltaꢀclosoꢀtricosaboratoꢀ
8´ꢀoxy)ethoxy]ethyl}ꢀLꢀserinate (9). To a solution of ethyl ester
of NꢀBocꢀLꢀserine (0.18 g, 0.79 mmol) in MeCN (5 mL), comꢀ
pound 1 (0.33 g, 0.79 mmol) and K2CO3 (1.09 g, 7.90 mmol)
were added. The reaction mixtrure was refluxed for 4 h and
cooled to room temperature, the excess of K2CO3 was filtered
off, and the solvent was removed on a rotary evaporator. The
resulted residue was dissolved in acetone and treated with an
excess of an aqueous solution of CsCl. The formed precipitate
was chromatographed on a silica gel column using a mixture of
MeCN and CH2Cl2 as an eluent to yield the product (0.10 g,
18.6%). 1H NMR (acetoneꢀd6), δ: 8.69 (d, 1 H, J = 8.0 Hz); 7.16
(d, 2 H, J = 8.6 Hz); 6.87 (d, 2 H, J = 8.6 Hz); 4.66 (m, 1 H);
4.20 (s, 4 H, CHcarb); 4.13 (q, 2 H, J = 7.2 Hz); 4.08 (t, 2 H,
J = 4.8 Hz); 3.78 (t, 2 H, J = 4.8 Hz); 3.62 (m, 2 H); 3.56 (m, 2 H);
3.22—2.98 (m, 2 H); 1.18 (t, 3 H, J = 7.2 Hz). 11B NMR (aceꢀ
toneꢀd6), δ: 23.2 (s, 1 B); 4.3 (d, 1 B); 0.4 (d, 1 B); –2.5 (d, 1 B);
–4.4 (d, 2 B); –8.0 (m, 6 B); –17.3 (d, 2 B); –20.4 (d, 2 B);
–21.8 (d, 1 B); –28.5 (d, 1 B).
This work was financially supported by the Russian
Foundation for Basic Research (Projects Nos 08ꢀ03ꢀ00463,
09ꢀ03ꢀ00701, and 10ꢀ03ꢀ00698) and the Presidium of the
Russian Academy of Sciences (Program "Development of
methods for the preparation of chemical substances and
design of new materials").
References
(4S)ꢀ8´ꢀ(2ꢀ{2ꢀ[4ꢀ(2ꢀAmmonioꢀ2ꢀcarboxyethyl)phenoxy]ꢀ
ethoxy}ethoxy)uncosahydroꢀ1´,1″,2´,2″ꢀtetracarbaꢀ3´ꢀcommoꢀ
cobaltaꢀclosoꢀtricosaborate (7). To a solution of compound 6
(0.21 g, 0.31 mmol) in EtOH (8 mL), SOCl2 (1 mL) was added
dropwise The reaction mixture was stirred at room temperature
for 27 h and concentrated to dryness on a rotary evaporator to
1. M. F. Hawthorne, Angew. Chem., Int. Ed. Engl., 1993,
32, 950.
2. A. H. Soloway, W. Tjarks, B. A. Barnum, F.ꢀG. Rong, R. F.
Barth, I. M. Codogni, J. G. Wilson, Chem. Rev., 1998,
98, 1515.
1
yield the orange product (0.11 g, 70%). H NMR (acetoneꢀd6),
δ: 7.5 (d, 2 H, J = 8.6 Hz); 6.97 (d, 2 H, J = 8.6 Hz); 5.38 (m, 1 H);
4.31 (s+t, 6 H); 4.14 (t, 2 H, J = 4.8 Hz); 3.81 (t, 2 H, J = 4.8 Hz);
3.58 (m, 2 H); 3.53—3.15 (m, 2 H). 11B NMR (acetoneꢀd6), δ:
22.8 (C, 1 B); 3.8 (d, 1 B); 0.3 (d, 1 B); –2.4 (d, 1 B); –4.2 (d, 2 B);
–7.4 (d, 2 B); –8.3 (d, 4 B); –17.3 (d, 2 B); –20.4 (d, 2 B); –22.0
(d, 1 B); –28.4 (d, 1 B). IR, ν/cm–1: 2558 (νBH), 1747 (νC=O),
1726 (νC=O).
3. (a) I. B. Sivaev, V. I. Bregadze, Ross. Khim. Zh., 2004, 48(4),
109; (b) I. B. Sivaev, V. I. Bregadze, Eur. J. Inorg. Chem.,
2009, 1433.
4. R. F. Barth, J. A. Coderre, M. G. H. Vicente, T. E. Blue, S.ꢀI.
Miyatake, in HighꢀGrade Gliomas (Diagnosis and Treatment),
Humana Press, Totowa, NJ, 2007, p. 431.
5. N. Bodor, P. Buchwald, Adv. Drug Delivery Rev., 1999,
36, 229.
Potassium {2ꢀ[2ꢀ(uncosahydroꢀ1´,1″,2´,2″ꢀtetracarbaꢀ3´ꢀ
commoꢀcobaltaꢀclosoꢀtricosaboratoꢀ8´ꢀoxy)ethoxy]ethyl}[Nꢀ
(tertꢀbutoxycarbonyl)ꢀLꢀserinate] (8). To a solution of NꢀBocꢀLꢀ
serine (0.14 g, 0.64 mmol) in MeCN (10 mL), compound 1 (0.26 g,
0.64 mmol) and K2CO3 (0.88 g, 6.40 mmol) were added. The
reaction mixture was refluxed for 1 h and then cooled to room
temperature. The excess of K2CO3 was filtered off, the solvent
was removed on a rotary evaporator. The resulted residue
was chromatographed on a silica gel column (the eluent was
MeCN : CH2Cl2 (1 : 5)) to yield the orange oily product (0.40 g,
94%). 1H NMR (acetoneꢀd6), δ: 6.16 (d, 1 H, J = 7.6 Hz); 4.39—4.21
(m, 2 H); 4.21—4.02 (m, 1 H); 4.15 (s, 2 H, CHcarb); 4.11 (s, 2 H,
CHcarb); 3.95—3.78 (m, 2 H); 3.70 (t, 2 H, J = 4.6 Hz); 3.65
(m, 2 H); 3.55 (m, 2 H); 1.40 (s, 9 H). 13C NMR (acetoneꢀd6), δ:
171.0, 155.6, 78.8, 71.9, 68.7, 68.4, 64.2, 62.3, 56.0, 53.7, 46.5,
27.7. 11B NMR (acetoneꢀd6), δ: 23.2 (s, 1 B); 4.4 (d, 1 B); 0.4 (d, 1 B);
–2.6 (d, 1 B); –4.5 (d, 2 B); –7.7 (d, 4 B); –17.3 (d, 2 B); –20.4
(d, 2 B); –22.1 (d, 1 B); –28.6 (d, 1 B). MS (ESI), m/z: 614 [М]–.
6. I. Tamai, A. Tsuji, J. Pharm. Sci., 2000, 89, 1371.
7. R. J. Boado, J. Y. Li, M. Nagaya, C. Zhang, W. M. Parꢀ
dridge, Proc. Natl. Acad. Sci. USA, 1999, 96, 12079.
8. R. Duelli, B. E. Enerson, D. Z. Gerhart, L. R. Drewes,
J. Cereb. Blood Flow Metab., 2000, 11, 1557.
9. (a) Y. Kanai, H. Segawa, K.ꢀi. Miyamoto, H. Uchino,
E. Takeda, H. Endou, J. Biol. Chem., 1998, 273, 23629;
(b) O. Yanagida, Y. Kanai, A. Chairoungdua, D. K. Kim,
H. Segawa, T. Nii, S. H. Cha, H. Matsuo, J. Fukushima,
Y. Fukasawa, Y. Tani, Y. Taketani, H. Uchino, J. Y. Kim,
J. Inatomi, I. Okayasu, K.ꢀi. Miyamoto, E. Takeda, T. Goya,
H. Endou, Biochim. Biophys. Acta, 2001, 1514, 291.
10. P. Gomes, P. SoaresꢀdaꢀSilva, Brain Res., 1999, 829, 143.
11. G. J. Goldenberg, H. Y. Lam, A. Begleiter, J. Biol. Chem.,
1979, 254, 1057.
12. (a) R. Bergman, J. Pietzsch, F. Fuechtner, B. Pawelke,
B. BeuthienꢀBaumann, B. Johannsen, J. Kotzerke, J. Nucl.