Angewandte
Chemie
Table 1: Scope of palladium-catalyzed formation of 3-aminotetrahydrofuran derivatives.[a]
on the benzoate ligand.[18] Notably,
understanding the relative rates of
Entry
Alcohol
Substituents
Major product
Product no.
Yield [%] (d.r.)
IV
À
different C X couplings at Pd
centers will likely be critical for
the design of catalysts and oxidants
for future PdII/PdIV-catalyzed trans-
formations.
1
Ar=Ph (4)
4a
77 (10:1)
2
Ar=p-MeOC6H4 (5)
Ar=m-MeOC6H4 (6)
Ar=o-MeOC6H4 (7)
Ar=p-CF3C6H4 (8)
Ar=m-CF3C6H4 (9)
Ar=p-BrC6H4 (10)
Ar=2-naphthyl (11)
Ar=mesityl (12)
5a
62 (15:1)
55 (5.4:1)
63 (7.8:1)
54 (>20:1)
60 (16:1)
56 (>20:1)
80 (12:1)
72 (1.4:1)
30 (1.4:1)
27 (1.5:1)
<5
In conclusion,we have demon-
strated that Pd-catalyzed alkene
aminopalladation to generate s-
alkyl Pd species can be followed
by intramolecular oxidative func-
tionalization to stereoselectively
afford tetrahydrofuran products.
Mechanistic studies suggest that
these transformations proceed by
cis aminopalladation and subse-
3
6a
4
7a
5
8a
À
quent C O bond-forming reductive
6
9a
elimination with unusual retention
of stereochemistry at the carbon
atom. Future studies will further
probe the mechanism and expand
the scope of this reaction.
7
10a
11a
12a
13a
14a
15a
16a
8
Received: April 4,2007
Published online: June 28,2007
9
Keywords: allylic compounds ·
.
aminopalladation · oxidation ·
palladium · tetrahydrofurans
10
11
12
13
R=benzyl (14)
R=isopropyl (15)
[1] a) N. Miyaura,A. Suzuki, Chem.
Rev. 1995, 95,2457 – 2483; b) S.
Kotha,K. Lahiri,D. Kashinath,
Tetrahedron 2002, 58,9633 – 9695;
c) J. K. Stille, Angew. Chem. 1986,
98,504 – 519; Angew. Chem. Int.
Ed. Engl. 1986, 25,508 – 524; d) E.
Negishi,L. Anastasia, Chem. Rev.
2003, 103,1979 – 2018; e) A. R.
Muci,S. L. Buchwald, Top. Curr.
Chem. 2002, 219,131 – 209; f) N. R.
47
[a] Reagents and conditions: 1 equiv phthalimide, 3 equiv PhI(OAc)2, 3 equiv 3-alken-1-ol, 10 mol%
Pd(OAc)2, 20 mol% AgBF4 in 1.4 mLCH 3CN at 608C.
carbon atom.[3a] The stereochemical outcome of the current
reactions may be due to the more basic nature of the
nucleophile (alkoxide versus acetate) and/or the intramole-
cularity of the reductive elimination event.
This transformation also presents a system in which the
key s-alkyl PdIV intermediate likely contains multiple differ-
ent oxygen-donor ligands,including a tethered alkoxide (OR)
and at least one acetate (OAc) ligand. This study clearly
shows that C OR bond formation is favored with high
selectivity over C OAc coupling. This may result from the
intramolecularity of the ether-forming reductive elimination,
but is more likely due to the higher basicity/nucleophilicity of
the alkoxide relative to the OAc ligand. Consistent with this
Deprez,M. S. Sanford, Inorg. Chem. 2007, 46,1924 – 1935.
[2] For examples,see: a) A. R. Dick,K. L. Hull,M. S. Sanford,
Am. Chem. Soc. 2004, 126,2300 – 2301; b) L. V. Desai,K. L.
J.
Hull,M. S. Sanford, J. Am. Chem. Soc. 2004, 126,9542 – 9543;
c) L. V. Desai,H. A. Malik,M. S. Sanford, Org. Lett. 2006, 8,
1141 – 1144; d) D. Kalyani,A. R. Dick,W. Q. Anani,M. S.
Sanford, Org. Lett. 2006, 8,2523 – 2526; e) K. L. Hull,W. Q.
Anani,M. S. Sanford, J. Am. Chem. Soc. 2006, 128,7134 – 7135;
f) R. Giri,X. Chen,J.-Q. Yu, Angew. Chem. 2005, 117,2150 –
2153; Angew. Chem. Int. Ed. 2005, 44,2112 – 2115; g) R. Giri,X.
Chen,J.-Q. Yu, Org. Biomol. Chem. 2006, 4,4041 – 4047; h) O.
Daugulis,V. G. Zaitsev, Angew. Chem. 2005, 117,4114 – 4116;
Angew. Chem. Int. Ed. 2005, 44,4046 – 4048; i) B. V. S. Reddy,
L. R. Reddy,E. J. Corey, Org. Lett. 2006, 8,3391 – 3394.
À
À
[3] a) G. Liu,S. S. Stahl, J. Am. Chem. Soc. 2006, 128,7179 – 7181;
b) E. J. Alexanian,C. Lee,E. J. Sorensen, J. Am. Chem. Soc.
2005, 127,7690 – 7691; c) J. Streuff,C. H. Hovelmann,M. Nieger,
K. Muniz, J. Am. Chem. Soc. 2005, 127,14586 – 14587.
À
hypothesis,stoichiometric C O bond-forming reductive elim-
ination from PdIV aryl benzoate complexes was shown to
proceed significantly faster with electron-donor substituents
Angew. Chem. Int. Ed. 2007, 46, 5737 –5740
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5739