5042
H. S. Lee et al. / Tetrahedron Letters 52 (2011) 5039–5042
aza-Cope
rearrangement
intramolecular SN2' type
addition-elimination
H2C
Ph
N
3a
H2C
Ph
N
3a
concerted mechanism
stepwise mechanism
COOMe
COOMe
resonance-stabilized enamine II
Scheme 6.
142.85, 149.20, 159.53, 167.13; ESI-MS m/z 268 (M++H). Anal. Calcd for
17H17NO2: C, 76.38; H, 6.41; N, 5.24. Found: C, 76.63; H, 6.77; N, 5.03.
Compound 3d: 73%; colorless oil; IR (film) 1720, 1487, 1445, 1271, 1253,
1139 cmꢀ1 1H NMR (CDCl3, 300 MHz)
1.19 (t, J = 7.5 Hz, 3H), 2.56 (q,
J = 7.5 Hz, 2H), 3.20 (dd, J = 13.8 and 8.4 Hz, 1H), 3.36 (dd, J = 13.8 and 7.8 Hz,
1H), 3.61 (s, 3H), 4.50 (dd, J = 8.4 and 7.8 Hz, 1H), 5.76 (s, 1H), 6.30 (s, 1H), 6.85
(d, J = 7.8 Hz, 1H), 7.10–7.25 (m, 5H), 7.29 (d, J = 7.8 Hz, 1H), 8.34 (s, 1H); 13C
NMR (CDCl3, 75 MHz) d 15.14, 25.52, 42.53, 46.29, 51.67, 122.88, 124.73, 126.30,
127.94, 128.11, 135.29, 136.41, 141.98, 142.76, 148.72, 156.62, 167.05; ESI-MS
m/z 296 (M++H). Anal. Calcd for C19H21NO2: C, 77.26; H, 7.27; N, 4.74. Found: C,
77.32; H, 7.44; N, 4.82.
Acknowledgments
C
This work was supported by the National Research Foundation
of Korea Grant funded by the Korean Government (2011-0002570).
Spectroscopic data were obtained from the Korea Basic Science
Institute, Gwangju branch.
;
d
References and notes
Compound 3g: 85%; white solid, mp 166–168 °C; IR (KBr) 1714, 1435, 1263,
1143 cmꢀ1 1H NMR (CDCl3, 300 MHz) d 3.61 (s, 3H), 4.72 (d, J = 12.3 Hz, 1H),
;
1. For the general review on Baylis–Hillman reaction, see: (a) Basavaiah, D.; Rao, A.
J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811–891; (b) Basavaiah, D.; Reddy, B.
S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447–5674; (c) Singh, V.; Batra, S.
Tetrahedron 2008, 64, 4511–4574; (d) Declerck, V.; Martinez, J.; Lamaty, F. Chem.
Rev. 2009, 109, 1–48; (e) Ciganek, E. In Organic Reactions; Paquette, L. A., Ed.;
John Wiley & Sons: New York, 1997; Vol. 51, pp 201–350; (f) Kim, J. N.; Lee, K. Y.
Curr. Org. Chem. 2002, 6, 627–645; (g) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull.
Korean Chem. Soc. 2005, 26, 1481–1490; (h) Radha Krishna, P.; Sachwani, R.;
Reddy, P. S. Synlett 2008, 2897–2912; (i) Gowrisankar, S.; Lee, H. S.; Kim, S. H.;
Lee, K. Y.; Kim, J. N. Tetrahedron 2009, 65, 8769–8780.
2. For the synthetic applications of DABCO salt of Baylis–Hillman adduct, see: (a)
Chung, Y. M.; Gong, J. H.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2001, 42, 9023–
9026; (b) Kim, J. N.; Lee, H. J.; Lee, K. Y.; Gong, J. H. Synlett 2002, 173–175; (c)
Gong, J. H.; Kim, H. R.; Ryu, E. K.; Kim, J. N. Bull. Korean Chem. Soc. 2002, 23, 789–
790; (d) Baidya, M.; Remennikov, G. Y.; Mayer, P.; Mayr, H. Chem. Eur. J. 2010, 16,
1365–1371; (e) Cui, H.-L.; Feng, X.; Peng, J.; Lei, J.; Jiang, K.; Chen, Y.-C. Angew.
Chem., Int. Ed. 2009, 48, 5737–5740; (f) Li, J.; Wang, X.; Zhang, Y. Tetrahedron
Lett. 2005, 46, 5233–5237.
3. For the reactions of Baylis–Hillman adducts and pyridine derivatives, see: (a)
Basavaiah, D.; Devendar, B.; Lenin, D. V.; Satyanarayana, T. Synlett 2009, 411–
416; (b) Viswambharan, B.; Selvakumar, K.; Madhavan, S.; Shanmugam, P. Org.
Lett. 2010, 12, 2108–2111; (c) Basavaiah, D.; Satyanarayana, T. Tetrahedron Lett.
2002, 43, 4301–4303; (d) Sreevani, R.; Manjula, A.; Rao, B. V. J. Heterocycl. Chem.
2011, 48, 586–591; (e) Bode, M. L.; Kaye, P. T. J. Chem. Soc., Perkin Trans. 1 1990,
2612–2613.
4. Kim, J. M.; Kim, S. H.; Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2009, 50, 1734–1737.
5. For the palladium-catalyzed activation of picoline derivatives, see: (a) Qian, B.;
Guo, S.; Shao, J.; Zhu, Q.; Yang, L.; Xia, C.; Huang, H. J. Am. Chem. Soc. 2010, 132,
3650–3651; (b) Song, G.; Su, Y.; Gong, X.; Han, K.; Li, X. Org. Lett. 2011, 13, 1968–
1971; (c) Niwa, T.; Yorimitsu, H.; Oshima, K. Org. Lett. 2007, 9, 2373–2375; (d)
Burton, P. M.; Morris, J. A. Org. Lett. 2010, 12, 5359–5361; (e) Trost, B. M.;
Thaisrivongs, D. A. J. Am. Chem. Soc. 2008, 130, 14092–14093; (f) Trost, B. M.;
Thaisrivongs, D. A. J. Am. Chem. Soc. 2009, 131, 12056–12057.
5.07 (d, J = 12.3 Hz, 1H), 5.73 (s, 1H), 6.16 (s, 1H), 6.95–7.20 (m, 11H), 7.29 (d,
J = 7.8 Hz, 1H), 7.54 (t, J = 7.8 Hz, 1H), 8.53 (d, J = 4.8 Hz, 1H); 13C NMR (CDCl3,
75 MHz) d 50.35, 51.83, 57.65, 121.25, 123.00, 125.30, 126.18 (2C), 127.86,
128.01, 128.47, 128.78, 136.38, 140.60, 141.44, 142.12, 149.32, 162.08, 167.17;
ESI-MS m/z 344 (M++H). Anal. Calcd for C23H21NO2: C, 80.44; H, 6.16; N, 4.08.
Found: C, 80.28; H, 6.41; N, 3.97.
Compound 3i: 68%; colorless oil; IR (film) 2221, 1590, 1438, 1268 cmꢀ1 1H NMR
;
(CDCl3, 300 MHz) d 3.30 (dd, J = 13.8 and 7.2 Hz, 1H), 3.43 (dd, J = 13.8 and
8.7 Hz, 1H), 4.23 (dd, J = 8.7 and 7.2 Hz, 1H), 5.72 (s, 1H), 5.77 (s, 1H), 7.05-7.10
(m, 2H), 7.20–7.34 (m, 5H), 7.51 (t, J = 7.5 Hz, 1H), 8.53 (d, J = 4.8 Hz, 1H); 13C
NMR (CDCl3, 75 MHz) d 41.46, 49.72, 117.73, 121.46, 123.81, 126.03, 127.33,
127.39, 128.64, 130.61, 136.22, 139.53, 149.32, 157.81; ESI-MS m/z 235 (M++H).
Anal. Calcd for C16H14N2: C, 82.02; H, 6.02; N, 11.96. Found: C, 81.89; H, 6.25; N,
11.87.
Compound 3m: 56%; colorless oil; IR (film) 1718, 1600, 1250, 1139 cmꢀ1 1H
;
NMR (CDCl3, 300 MHz) d 3.04 (dd, J = 13.8 and 9.3 Hz, 1H), 3.21 (dd, J = 13.8 and
6.6 Hz, 1H), 3.67 (s, 3H), 4.21 (dd, J = 9.3 and 6.6 Hz, 1H), 5.69 (s, 1H), 6.33 (s,
1H), 6.96 (d, J = 5.1 Hz, 2H), 7.12–7.27 (m, 5H), 8.40 (d, J = 5.1 Hz, 2H); 13C NMR
(CDCl3, 75 MHz) d 39.98, 47.04, 51.91, 124.32, 124.91, 126.80, 128.04, 128.36,
140.76, 142.57, 148.72, 149.45, 166.92; ESI-MS m/z 268 (M++H). Anal. Calcd for
C
17H17NO2: C, 76.38; H, 6.41; N, 5.24. Found: C, 76.57; H, 6.34; N, 5.17.
Compound 3n: 46%; colorless oil; IR (film) 1721, 1605, 1443, 1271, 1142 cmꢀ1
;
1H NMR (CDCl3, 300 MHz) d 2.21 (s, 3H), 3.17 (dd, J = 13.8 and 8.4 Hz, 1H), 3.34
(dd, J = 13.8 and 7.8 Hz, 1H), 3.62 (s, 3H), 4.51 (dd, J = 8.4 and 7.8 Hz, 1H), 5.76 (s,
1H), 6.31 (s, 1H), 6.76 (s, 1H), 6.86 (d, J = 5.1 Hz, 1H), 7.11–7.27 (m, 5H), 8.34 (d,
J = 5.1 Hz, 1H); 13C NMR (CDCl3, 75 MHz) d 20.77, 42.83, 46.23, 51.66, 122.10,
124.25, 124.75, 126.30, 127.91, 128.10, 141.95, 142.70, 146.89, 148.78, 159.12,
167.05; ESI-MS m/z 282 (M++H). Anal. Calcd for C18H19NO2: C, 76.84; H, 6.81; N,
4.98. Found: C, 76.59; H, 6.97; N, 5.06.
7. For the leading references on thermal and palladium-catalyzed aza-Cope
rearrangement, see: (a) Majumdar, K. C.; Bhattacharyya, T.; Chattopadhyay, B.;
Sinha, B. Synthesis 2009, 2117–2142; (b) Welch, J. T.; DeCorte, B.; DeKimpe, N. J.
Org. Chem. 1990, 55, 4981–4983; (c) Weston, M. H.; Nakajima, K.; Back, T. G. J.
Org. Chem. 2008, 73, 4630–4637; (d) Walters, M. A. J. Org. Chem. 1996, 61, 978–
983; (e) Lee, C. G.; Lee, K. Y.; Lee, S.; Kim, J. N. Tetrahedron 2005, 61, 1493–1499;
(f) Nakamura, H.; Yamamoto, Y. Handbook of Organopalladium Chemistry for
Organic Synthesis; Wiley Interscience, 2002. pp 2919–2934; (g) Murahashi, S.-I.;
Makabe, Y.; Kunita, K. J. Org. Chem. 1988, 53, 4489–4495; Palladium-catalyzed
decarboxylative allylation through a tandem decarboxylation/N-allylation/aza-
Cope rearrangement of 2-azaarene derivatives has been reported: (h) Waetzig, S.
R.; Tunge, J. A. J. Am. Chem. Soc. 2007, 129, 4138–4139.
8. For a different discussion on the mechanism of aza-Cope rearrangement, see: (a)
Holtgrewe, C.; Diedrich, C.; Pape, T.; Grimme, S.; Hahn, F. E. Eur. J. Org. Chem.
2006, 3116–3124; (b) Winter, R. F.; Rauhut, G. Chem. Eur. J. 2002, 8, 641–649; (c)
Mariano, P. S.; Dunaway-Mariano, D.; Huesmann, P. L. J. Org. Chem. 1979, 44,
124–133.
6. Typical experimental procedure for the synthesis of compound 3a: A mixture of
Baylis–Hillman bromide 1a (255 mg, 1.0 mmol)1–4 and picoline (2a, 186 mg,
2.0 mmol) in CH3CN (2.0 mL) was heated to reflux for 60 min. To the reaction
mixture, K2CO3 (276 mg, 2.0 mmol) was added and maintain refluxing
temperature for 3 h. After the usual aqueous extractive workup and column
chromatographic process (hexanes/ether/CH2Cl2, 1:1:3) compound 3a was
obtained as colorless oil, 206 mg (77%). Other compounds were synthesized
similarly and the selected spectroscopic data of 3a, 3d, 3g, 3i, 3m, and 3n are as
follows.
Compound 3a: 77%; colorless oil; IR (film) 1720, 1438, 1249, 1143 cmꢀ1 1H NMR
;
(CDCl3, 300 MHz) d 3.23 (dd, J = 13.8 and 8.4 Hz, 1H), 3.39 (dd, J = 13.8 and
7.2 Hz, 1H), 3.63 (s, 3H), 4.51 (dd, J = 8.4 and 7.2 Hz, 1H), 5.76 (s, 1H), 6.31 (s,
1H), 6.92 (d, J = 7.5 Hz, 1H), 7.05 (dd, J = 7.5 and 4.8 Hz, 1H), 7.11–7.25 (m, 5H),
7.46 (t, J = 7.5 Hz, 1H), 8.50 (d, J = 4.8 Hz, 1H); 13C NMR (CDCl3, 75 MHz) d 43.07,
46.41, 51.79, 121.15, 123.46, 124.82, 126.44, 128.02, 128.23, 135.98, 141.89,