on nitrogen readily lost CO2 upon treatment with Pd(0)
and that the resulting π-allyl Pd intermediate could be
trapped with CO or dipolarophiles.
Thus, the potential for incorporating CO2 into
vinylaziridines,13 perhaps because of its high thermodynamic
and kinetic stability, seemed remote. Nevertheless, our
interest in the synthesis14 and utility2 of vinylaziridines
together with the contemporary environmental need to
find further uses of CO2 as a raw material15,16 prompted us
to investigate this area further.
The formation of the cis-aziridine 2a is in keeping with
Ibuka’s observations as he had previously found that
trans-N-tosyl aziridines readily isomerized to cis-aziridines
(98:2) in the presence of Pd(0).11
The isolation of the isomerized starting material 2a
implicated a slow reaction between the amide anion and
CO2. We reasoned that ion pairing of the amide anion with
the cationic Pd complex might compromise its reactivity and
that increased nucleophilicity of the aza-anion could be
achieved by rendering the Pd center neutral. Such a change
had been pivotal in the successful reactions of vinyl azir-
idines with singly activated Michael acceptors.4c We there-
fore decided to add tetrabutylammonium chloride (TBAC).18
While reaction at RT was lower yielding, at 0 °C the product
vinyloxazolidinone 3a was obtained in 86% yield (entries 2
and 3). We were able to achieve similar results at a lower
phosphine loading (entry 4). Replacing the highly hygro-
scopic TBAC with the more easily manageable fluoride
source tetrabutyl-ammonium difluorotriphenylsilicate
(TBAT) led to a further increase in yield (92%) with no
detectable traces of starting material 1a or cis-aziridine 2a.
Furthermore the reaction was now completed over a shorter
reaction time (entry 5). A control experiment in the absence
of TBAT or Pd (entries 6, 7) confirmed the beneficial effects
of both species in promoting the carboxylation.
Scheme 2. Synthesis of Vinylaziridines
We initially synthesized a series of N-tosyl-2-vinylazir-
idines 1 using our sulfur ylide methodology as shown in
Scheme 2 (see Supporting Information (SI)).2 Treatment
Having developed an optimized protocol we then
screened the scope of the reaction (Table 2). Carboxylation
occurred uneventfully for a series of diaryl-substituted
trans-aziridines 1bꢀ1g bearing either electron-donating
or -withdrawing para substituents (entries 2, 3, 6, 7, 9).
However, when R1 possessed greater electron-donating
character the addition of TBAT became detrimental and
of the vinylaziridine 1a with Pd2(dba)3 CHCl3 in the
3
presence of Ph3P and just an ambient atmosphere of CO2
gave the trans-vinyloxazolidinone 3a in a promising 61%
yield. In addition, cis-aziridine 2a was also obtained
together with traces of the starting material, trans-aziridine
1a (Table 1, entry 1).17
(11) Ibuka, T.; Mimura, N.; Aoyama, H.; Akaji, M.; Ohno, H.;
Miwa, Y.; Taga, T.; Nakai, K; Tamamura, H.; Fujii, N. J. Org. Chem.
1997, 62, 999–1015.
(6) Trost has reported the insertion of CO2 into vinylepoxides at
elevated pressure. See: (a) Trost, B. M.; Angle, S. R. J. Am. Chem. Soc.
1985, 107, 6123–6124. Yoshida reported the conversion of amino-
alkenyl carbamates into vinyloxazolidinones. See: (b) Yoshida, M.;
Ohsawa, Y.; Sugimoto, K.; Hidetoshi, T; Ihara, M. Tetrahedron Lett.
2007, 48, 8678–8682.
(7) (a) For a recent review, see: Zappia, G.; Cancelliere, G.; Gacs-
Baitz, E.; Delle Monache, G.; Misiti, D.; Nevola, L.; Botta, B. Curr. Org.
Synth. 2007, 4, 238–307.
(8) For representative examples on the use of 5-vinyloxazolidinones
in synthesis, see: (a) Reference 4b. (b) Cook, G. R.; Shanker, P. S.;
Peterson, S. L. Org. Lett. 1999, 1, 615–617. (c) Yamamoto, T.; Hasegawa,
H.; Ishii, S.; Kaji, S.; Masuyama, T.; Harada, S.; Katsumura, S. Tetrahedron
2008, 64, 11647–11660. (d) Robertson, J.; Abdulmalek, E. Tetrahedron Lett.
2009, 50, 3516–3518.
(9) For examples of hydrolysis of vinyloxazolidinones to unsaturated
β-aminoalcohols, see: (a) Olofsson, B.; Khamrai, U.; Somfai, P. Org.
Lett. 2000, 2, 4087–4089. (b) Disadee, W.; Ishikawa, T. J. Org. Chem.
2005, 70, 9399–9406.
(10) (a) Colca, J. R.; McDonald, W. G.; Waldon, D. J.; Thomasco,
L. M.; Gadwood, R. C.; Lund, E. T.; Cavey, G. S.; Mathews, W. R.;
Adams, L. D.; Cecil, E. T.; Pearson, J. D.; Bock, J. H.; Mott, J. E.;
Shinabarger, D. L.; Xiong, L.; Mankin, A. S. J. Biol. Chem. 2003, 278,
21972–21979. (b) Hoellman, D. B.; Lin, G.; Ednie, L. M.; Rattan, A.;
Jacobs, M. R.; Appelbaum, P. C. Antimicrob. Agents Chemother. 2003,
47, 1148–1150. (c) Jacqueline, C.; Caillon, J.; Le Mabecque, V.; Miegeville,
A.-F.; Donnio, P.-Y.; Bugnon, D.; Potel, G. J. Antimicrob. Chemother.
2003, 51, 857–864. (d) Moellering, R. C., Jr. Ann. Intern. Med. 2003, 138,
135–142. (e) Rubinstein, E.; Isturiz, R.; Standiford, H. C.; Smith, L. G.;
Oliphant, T. H.; Cammarata, S.; Hafkin, B.; Le, V.; Remington, J.
Antimicrob. Agents Chemother. 2003, 47, 1824–1831. (f) Mansour-Ghanaei,
F.; Fallah, M. S.; Shafaghi, A. Med. Sci. Monit. 2002, 8, I27–PI30. (g)
Kaatz, G. W.; Rybak, M. J. Emerging Drugs 2001, 6, 43–55. (h) Fluit, A. C.;
Schmitz, F. J.; Verhoef, J.; Milatovic, D. J. Antimicrob. Chemother. 2002,
50, 271–276.
(12) (a) Knight, J. G.; Ainge, S. W.; Harm, A. M.; Harwood, S. J.;
Maughan, H. I.; Armour, D. R.; Hollinshead, D. M.; Jaxa-Chamiec,
A. A. J. Am. Chem. Soc. 2000, 122, 2944–2945. (b) Knight, J. G.;
Tchabanenko, K. Tetrahedron 2002, 58, 6659–664. (c) Knight, J. G.;
Lawson, I. M.; Johnson, C. N. Synthesis 2006, 227–230.
(13) For examples of the conversion of alkyl aziridines into oxazo-
lidinones catalyzed by LiI, see: (a) Miller, A. W.; Nguyen, S. T. Org. Lett.
2004, 6, 2301–2304. (b) Hancok, M. T.; Pinhas, A. R. Synthesis 2004, 14,
2347–2355. (c) Mu, W.-H.; Chasse, G. A.; Fang, D.-C. J. Phys. Chem. A
2008, 112, 6708–6714.
(14) (a) Aggarwal, V. K.; Alonso, E.; Fang, G.; Ferrara, M.; Hynd,
G.; Porcelloni, M. Angew. Chem., Int. Ed. 2001, 40, 1433–1436. (b) Illa,
O.; Arshad, M.; Ros, A.; McGarrigle, E. M.; Aggarwal, V. K. J. Am.
Chem. Soc. 2010, 132, 1828–1830. For a recent review, see: (c) Li, A.-H.;
Dai, L.-X.; Hou, X.-L.; Chen, M.-B. J. Org. Chem. 1996, 61, 4641–4648.
(d) Zhu, B.-H.; Zheng, J.-C.; Yu, C.-B.; Sun, X.-L.; Zhou, Y.-G.; Shen,
Q.; Tang, Y. Org. Lett. 2010, 3, 504–507. (e) McGarrigle, E. M.; Myers,
E. L.; Illa, O.; Shaw, M. A.; Riches, S. L.; Aggarwal, V. K. Chem. Rev.
2007, 107, 5841–5883. For routes from aziridine aldehydes, see: (f)
Baktharaman, S.; Afagh, N.; Vandersteen, A.; Yudin, A. K. Org. Lett.
2010, 12, 240–243.
(15) For a recent review on the use of CO2 in synthesis, see: Sakakura,
T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365–2387.
(16) For an example of waste CO2 being converted into useful
molecules, see: North, M.; Villuendas, P.; Young, C. Chem.;Eur. J.
2009, 15, 11454–11457.
(17) To avoid any further reaction of the desired oxazolidinone, the
reaction mixture was promptly filtered through a pad of silica to remove
the catalyst (see Supporting Information).
(18) For a review on the effects of halide additives in palladium
chemistry, see: Fagnou, K.; Lautens, M. Angew. Chem., Int. Ed. 2002,
41, 26–47.
Org. Lett., Vol. 13, No. 13, 2011
3455