COMMUNICATIONS
Yu-Tao He et al.
References
4-methylphenol (BHT), a decreased yield (46%) of
the desired product was observed. On the basis of the
above results, literature precedents,[25,26] and our pre-
viously research results,[27] we propose the following
mechanism (Scheme 5). Firstly, Togniꢁs reagent 2a is
reduced by Cu powder to afford a CF3 radical, which
reacts with 1,6-enyne to generate the radical inter-
mediate A. After cyclization by a 5-exo-dig process,
the vinyl radical intermediate B is formed. Secondly,
the vinyl radical intermediate B reacts with (2-iodo-
benzoyloxy)-copper(II) and TMSN3 to generate the
copper(II) azide complex D, which could also be ob-
tained from the cyclization of intermediate C. Subse-
quent reductive elimination of intermediate D gives
the azide E. The release of nitrogen from azide E
generates alkenyl nitrene F, which is considered as
a valuable synthetic equivalent of 2H-azirine. Finally,
the spiroketal products as pairs of diastereomers were
obtained followed by intermediate G, which is just
a resonance structure of the alkenyl nitrene F.
[1] a) P. W. Neber, K. Hartung, W. Ruopp, Ber. dtsch.
chem. Ges. 1925, 58, 1234; b) W. F. Berkowitz, Org.
React. 2011, 78, 321.
[2] a) D. A. Candito, M. Lautens, Org. Lett. 2010, 12, 3312;
b) N. S. Y. Loy, A. Singh, X. Xu, C.-M. Park, Angew.
Chem. 2013, 125, 2268; Angew. Chem. Int. Ed. 2013, 52,
2212.
[3] a) S. Chiba, G. Hattori, K. Narasaka, Chem. Lett. 2007,
36, 52; b) S. Jana, M. D. Clements, B. K. Sharp, N.
Zheng, Org. Lett. 2010, 12, 3736.
[4] a) X. X. Qi, X. X. Xu, C. M. Park, Chem. Commun.
2012, 48, 3996; b) J. Xuan, X. D. Xia, T. T. Zeng, Z. J.
Feng, J. R. Chen, L. Q. Lu, W. J. Xiao, Angew. Chem.
2014, 126, 5759; Angew. Chem. Int. Ed. 2014, 53, 5653.
[5] a) C. M. Park, Y. Jiang, Chem. Sci. 2014, 5, 2347; b) A.
Prechter, G. Henrion, P. Faudot dit Bel, F. Gagosz,
Angew. Chem. 2014, 126, 5059; Angew. Chem. Int. Ed.
2014, 53, 4959.
[6] X. Li, Y. Du, Z. Liang, X. Li, Y. Pan, K. Zhao, Org.
Lett. 2009, 11, 2643.
In summary, we have developed an efficient
copper-catalyzed cascade cyclization of 1,6-enynes for
the synthesis of spirocyclic skeleton 2H-azirines. Com-
pared to the traditional synthesis methodology, our
the developed reaction systems could introduce an
important pharmaceutically active group (CF3) simul-
taneously, and provide a facile access to various spiro-
cyclic skeleton motifs. Further exploration on the
basis of this strategy, especially the biological activity
of spirocyclic lactones, is currently underway in our
laboratory.
[7] a) A. F. Khlebnikov, M. S. Novikov, A. A. Amer, R. R.
Kostikov, J. Magull, Russ. J. Org. Chem. 2006, 42, 533;
b) V. A. Khlebnikov, M. S. Novikov, A. F. Khlebnikov,
N. V. Rostovskii, Tetrahedron Lett. 2009, 50, 6509.
[8] a) H. Heimgartner, Angew. Chem. 1991, 103, 271;
Angew. Chem. Int. Ed. 1991, 30, 238; b) F. Palacios,
A. M. Ochoa de Retana, E. Martínez de Marigorta,
J. M. de Los Santos, Eur. J. Org. Chem. 2001, 2401;
c) . Sjçholm TimØn, E. Risberg, P. Somfai, Tetrahe-
dron Lett. 2003, 44, 5339; d) A. R. Katritzky, M. Wang,
C. R. Wilkerson, H. J. Yang, Org. Chem. 2003, 68, 9105;
e) D. F. Taber, W. Tian, J. Am. Chem. Soc. 2006, 128,
1058.
[9] T. Sakai, Y. Liu, H. Ohta, T. Korenaga, T. Ema, J. Org.
Experimental Section
Chem. 2005, 70, 1369.
[10] Y. J. Jian, W. C. Chan, C.-M. Park, J. Am. Chem. Soc.
2012, 134, 4104.
General Procedure
[11] a) J. Ma, S. M. Hecht, Chem. Commun. 2004, 1190;
b) C. V. Galliford, K. A. Scheidt, Angew. Chem. 2007,
119, 8902; Angew. Chem. Int. Ed. 2007, 46, 8748.
[12] a) C.-M. Yang, S. Mannathan, C.-H. Cheng, Chem. Eur.
J. 2013, 19, 12212; b) C. Chen, J. Su, X. Tong, Chem.
Eur. J. 2013, 19, 5014; c) L. Zhang, Z. Li, Z.-Q. Liu,
Org. Lett. 2014, 16, 3688.
[13] a) L. Chu, F.-L. Qing, Org. Lett. 2012, 14, 2106; b) Y.
Yasu, T. Koike, M. Akita, Angew. Chem. 2012, 124,
9705; Angew. Chem. Int. Ed. 2012, 51, 9567; c) Y. Li, A.
Studer, Angew. Chem. 2012, 124, 8345; Angew. Chem.
Int. Ed. 2012, 51, 8221; d) X. Mu, T. Wu, H. Wang, Y.
Guo, G. Liu, J. Am. Chem. Soc. 2012, 134, 878; e) H.
Egami, S. Kawamura, A. Miyazaki, M. Sodeoka,
Angew. Chem. 2013, 125, 7995; Angew. Chem. Int. Ed.
2013, 52, 7841.
An oven-dried tube was charged with 1,6-enyne (0.2 mmol),
Togniꢁs reagent 2a (0.5 mmol) and Cu powder (0.02 mmol).
The tube was evacuated and backfilled with argon. Then,
TMSN3 (0.4 mmol) dissolved in DMF (1.5 mL) was added.
The reaction mixture was stirring at 908C for 6 h and hen
extracted with DCM. The combined organic layers were
washed with saturated brine, dried over Na2SO4, concentrat-
ed under vacuum and purified by flash column chromatogra-
phy to afford the product.
Acknowledgements
[14] a) V. V. Grushin, W. J. Marshall, J. Am. Chem. Soc.
2006, 128, 12644; b) N. D. Ball, J. W. Kampf, M. S. San-
ford, J. Am. Chem. Soc. 2010, 132, 2878; c) T. D. Sene-
cal, A. T. Parson, S. L. Buchwald, J. Org. Chem. 2011,
76, 1174; d) N. D. Ball, J. B. Gary, Y. Ye, M. S. Sanford,
J. Am. Chem. Soc. 2011, 133, 7577; e) Y. Ye, S. H. Lee,
M. S. Sanford, Org. Lett. 2011, 13, 5464; f) O. A. Toma-
We thank the National Natural Science Foundation (NSF
21272101, 21472074 and 21472073), the Fundamental Re-
search Funds for the Central Universities (lzujbky-2014-243),
the “111” Project, J1103307, Program for Changjiang Schol-
ars, innovative Research Team in University (IRT1138) and
the Cuiying Student Innovation Fund of Lanzhou University
(CYCXJJ-2015003) for support of this work.
3074
ꢀ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2015, 357, 3069 – 3075