1,4-conjugate addition of nitroalkanes to prochiral steri-
cally congested β,β-disubstituted enones, catalyzed by
simple chiral primary amines 1aÀ1h (Figure 1).12,13 We
have found that a combination of pressure and bifunc-
tional catalysis with primary amines derived from cincho-
na alkaloids can remarkably accelerate the reaction rate.
This approach allows for efficient asymmetric synthesis of
γ-nitroketones14 containing all-carbon quaternary stereo-
genic centers with high enantioselectivity.
Scheme 1. Creation of All-Carbon Quaternary Stereocenters by
1,4-Conjugate Addition to β,β-Disubstituted Enones
In our high-pressure studies we focused attention on
challenging 1,4-conjugate additions of carbon nucleo-
philes to prochiral β,β-disubstituted Michael acceptors
enabling the generation of quaternary stereogenic centers
(Scheme 1).6 Asymmetric organocatalytic Michael-type
reactions are practically restricted to β-monosubstituted
unsaturated carbonyl compounds and nitroalkenes.7 The
literature describes only a few examples of such organoca-
talytic reactions of sterically congested β,β-disubstituted
acceptors with C-nucleophiles,6c,8 usually with a very
limited scope, and some examples of intramolecular
reactions,9 e.g. DielsÀAlder, FriedelÀCrafts, and Stetter.
Moreover, this type of Michael acceptors was also applied
in asymmetric organocatalytic hydrogenation10 and some
additions of heteronucleophiles including epoxidation and
aziridination.11 In contrast, transition-metal-catalyzed
asymmetric conjugate addition reactions to β,β-disubsti-
tuted Michael acceptors have been quite extensively ex-
plored in recent years.6d
Figure 1. Organocatalysts examined in the Michael reaction.
As a model reaction for our studies, we chose the
addition of nitromethane to 3-methylcyclohexenone (2a,
Table 1). This particular reaction was investigated by the
research groups of Ley8a,b and Amedjkouh8c in the pre-
sence of chiral secondary amines. More promising results
were obtained recently by Ye’sgroup,8d with10À20 mol %
of the primary amine-thiourea catalyst containing 1,2-
diaminocyclohexane and a cinchona alkaloid moiety.
The product 3a was isolated after 5 days with 82% yield
and 94% ee; however, the presented scope of enones is
limited only to 3-n-alkylcyclohexenones.
Inthiscommunicationwedemonstrate thepositiveeffect
of hydrostatic pressure (up to 10 kbar) on enantioselective
(6) (a) Christoffers, J., Baro, A., Eds. Quaternary Stereocenters:
Challenges and Solutions for Organic Synthesis; Wiley-VCH: Weinheim,
2005. (b) Trost, B. M.; Jiang, C. Synthesis 2006, 369. (c) Bella, M.; Gasperi,
T. Synthesis 2009, 1583. (d) Hawner, C.; Alexakis, A. Chem. Commun.
2010, 7295. (e) Das, J. P.; Marek, I. Chem. Commun. 2011, 4593.
(7) Almasi, D.; Alonso, D. A.; Najera, C. Tetrahedron: Asymmetry
2007, 18, 299.
In our preliminary investigations we applied 5 mol %
of simple chiral primary amines 1aÀf as catalysts with
TFA as a cocatalyst (Figure 1, Table 1). Screening under
ambient conditions revealed a very low conversion of
3-methylcyclohexenone. In contrast, application of 10
kbar of pressure and a catalytic amount of 1,2-diamines
1bÀf remarkably accelerated the reaction rate (Table 1).
The best results in terms of conversions were observed
with amines 1c, 1e, and 1f. The significantly lower yield
(8) (a) Mitchell, C. E. T.; Brenner, S. E.; Ley, S. V. Chem. Commun.
2005, 5346. (b) Mitchell, C. E. T.; Brenner, S. E.; Garcia-Fortanet, J.;
Ley, S. V. Org. Biomol. Chem. 2006, 4, 2039. (c) Malmgren, M.;
Granander, J.; Amedjkouh, M. Tetrahedron: Asymmetry 2008, 19,
1934. (d) Li, P.; Wang, Y.; Liang, X.; Ye, J. Chem. Commun. 2008,
3302. (e) Wascholowski, V.; Hansen, H. M.; Longbottom, D. A.; Ley,
S. V. Synthesis 2008, 1269. (f) Bernardi, L.; Fini, F.; Fochi, M.; Ricci, A.
Synlett 2008, 1857. (g) Procopio, A.; De Nino, A.; Nardi, M.; Oliverio,
M.; Paonessa, R.; Pasceri, R. Synlett 2010, 1849.
(9) (a) Kerr, M. S.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 8876. (b)
Wilson, R. M.; Jen, W. S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005,
127, 11616. (c) Banwell, M. G.; Beck, D. A. S.; Willis, A. C. Arkivoc
2006, 163. (d) Xu, D.-Q.; Xia, A.-B.; Luo, S.-P.; Tang, J.; Zhang, S.;
Jiang, J.-R.; Xu, Z.-Y. Angew. Chem., Int. Ed. 2009, 48, 3821. (e) Zhang,
E.; Fan, C.-A.; Tu, Y.-Q.; Zhang, F.-M.; Song, Y.-L. J. Am. Chem. Soc.
2009, 131, 14626.
(10) (a) Ouellet, S. G.; Tuttle, J. B.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2005, 127, 32. (b) Yang, J. W.; Hechavarria Fonseca, M. T.;
Vignola, N.; List, B. Angew. Chem., Int. Ed. 2005, 44, 108. (c) Tuttle,
J. B.; Ouellet, S. G.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128,
12662. (d) Martin, N. J. A.; List, B. J. Am. Chem. Soc. 2006, 128, 13368.
(e) Martin, N. J. A.; Ozores, L.; List, B. J. Am. Chem. Soc. 2007, 129,
8976. (f) Martin, N. J. A.; Cheng, X.; List, B. J. Am. Chem. Soc. 2008,
130, 13862.
(11) (a) Wang, X.; Reisinger, C. M.; List, B. J. Am. Chem. Soc. 2008,
130, 6070. (b)Zhang, F.-G.; Yang, Q.-Q.;Xuan, J.; Lu, H.-H.;Duan, S.-W.;
Chen, J.-R.; Xiao, W.-J. Org. Lett. 2010, 12, 5636. (c) Pesciaioli, F.; De
Vincentiis, F.; Galzerano, P.; Bencivenni, G.; Bartoli, G.; Mazzanti, A.;
Melchiorre, P. Angew. Chem., Int. Ed. 2008, 47, 8703. (d) Lu, H.-H.;
Zhang, F.-G.; Meng, X.-G.; Duan, S.-W.; Xiao, W.-J. Org. Lett. 2009,
11, 3946.
(12) For a review on organocatalysis with primary amines, see: (a)
Jiang, L.; Chen, Y.-C. Catal. Sci. Technol. 2011, 1, 354. (b) Xu, L.-W.;
Luo, J.; Lu, Y. Chem. Commun. 2009, 1807. (c) Peng, F.; Shao, Z. J. Mol.
Catal. A: Chemical 2008, 285, 1. (d) Chen, Y.-C. Synlett 2008, 1919.
(13) For selected examples of organocatalytic 1,4-conjugate addition
of nitroalkanes, catalyzed by chiral primary amines, see: (a) Lv, J.;
Zhang, J.; Lin, Z.; Wang, Y. Chem.;Eur. J. 2009, 15, 972. (b) Mei, K.;
Jin, M.; Zhang, S.; Li, P.; Liu, W.; Chen, X.; Xue, F.; Duan, W.; Wang,
W. Org. Lett. 2009, 11, 2864. (c) Dong, L.-T.; Lu, R.-J.; Du, Q.-S.;
Zhang, J.-M.; Liu, S.-P.; Xuan, Y.-N.; Yan, M. Tetrahedron 2009, 65,
4124. (d) Liu, C.; Lu, Y. Org. Lett. 2010, 12, 2278. (e) Cui, H.-F.; Li, P.;
Wang, X.-W.; Chai, Z.; Yang, Y.-Q.; Cai, Y.-P.; Zhu, S.-Z.; Zhao, G.
Tetrahedron 2011, 67, 312. (f) Reference 8d.
(14) (a) Roca-Lopez, D.; Sadaba, D.; Delso, I.; Herrera, R. P.;
Tejero, T.; Merino, P. Tetrahedron: Asymmetry 2010, 21, 2561. (b)
Ballini, R.; Bosica, G.; Fiorini, D.; Palmieri, A.; Petrini, M. Chem.
Rev. 2005, 105, 933.
Org. Lett., Vol. 13, No. 14, 2011
3625