of ZnC being decreased, demonstrating that ZnC could be a
good ‘‘on-off’’ Cu2+ sensor candidate.
We thank the NSFC (50903075 and 50873093) for financial
support.
Notes and references
1 B. Valeur and I. Leray, Coord. Chem. Rev., 2000, 205, 3;
J. B. Pawley, Handbook of Biological Confocal Microscopy, Plenum,
New York, 1995; J. W. Lichtman and J.-A. Conchello,
Nat. Methods, 2005, 2, 910.
2 M. P. Cuajungco and K. Y. Faget, Brain Res. Rev., 2003, 41, 44;
M. Ebadi, F. Perini, K. Mountjoy and J. S. Garvey, J. Neurochem.,
1996, 66, 2121; J. M. Berg and Y. Shi, Science, 1996, 271, 1081.
3 C. E. Felton, L. P. Harding, J. E. Jones, B. M. Kariuki, S. J. A. Pope
and C. R. Rice, Chem. Commun., 2008, 6185; H. H. Wang, Q. Gan,
X. J. Wang, L. Xue, S. H. Liu and H. Jiang, Org. Lett., 2007, 9,
4995; J. S. Wu, W. M. Liu, X. Q. Zhuang, F. Wang, P. F. Wang,
S. L. Tao, X. H. Zhang, S. K. Wu and S. T. Lee, Org. Lett., 2007, 9,
33; H. Y. Gong, Q. Y. Zheng, X. H. Zhang, D. X. Wang and
M. X. Wang, Org. Lett., 2006, 8, 4895; M. A. Palacios, Z. Wang,
V. A. Montes, G. V. Zyryanov, Jr. and P. Anzenbacher, J. Am.
Chem. Soc., 2008, 130, 10307; Z. Li, M. Yu, L. Zhang, M. Yu,
J. Liu, L. Wei and H. Zhang, Chem. Commun., 2010, 46, 7169;
E. Tamanini, K. Flavin, M. Motevalli, S. Piperno, L. A. Gheber,
M. H. Todd and M. Watkinson, Inorg. Chem., 2010, 49, 3789;
E. Tamanini, A. Katewa, L. M. Sedger, M. H. Todd and
M. Watkinson, Inorg. Chem., 2009, 48, 319; L. Xue, C. Liu and
H. Jiang, Chem. Commun., 2009, 1061; B. A. Wong, S. Friedle
and S. J. Lippard, Inorg. Chem., 2009, 48, 7009; L. Xue, Q. Liu and
H. Jiang, Org. Lett., 2009, 11, 3454; L. Xue, C. Liu and H. Jiang,
Org. Lett., 2009, 11, 1655; Z. Liu, C. Zhang, Y. Li, Z. Wu, F. Qian,
X. Yang, W. He, X. Gao and Z. Guo, Org. Lett., 2009, 11, 795;
Y. Zhang, X. Guo, W. Si, L. Jia and X. Qian, Org. Lett., 2008, 10,
473; Z. Xu, K. H. Baek, H. N. Kim, J. Cui, X. Qian, D. R. Spring,
I. Shin and J. Yoon, J. Am. Chem. Soc., 2010, 132, 601.
Fig. 5 Fluorescence spectra of C (2.0 Â 10À5 M) + 4 equiv. of
Zn2+ upon the titration of Cu2+ (0–1 equiv.) in ethanol solution with
excitation at 246 nm.
the fluorescence emission spectra displayed a similar pattern at
near 375 nm to that with Cu2+ only, indicating the stronger
binding ability of Cu2+ than that of other ions. Because the
amount of Na+, Mg2+, K+, and Ca2+ is much more than Zn2+
and Cu2+ biologically, it is necessary to measure the disturbance
when the amount of these metal ions is much higher than that
of Zn2+ and Cu2+. The measurement experiments show that
no influorescence change was found even when the amount of
these alkali and alkaline earth metal ions was at a high
concentration of 6 mM.
To examine the binding reversibility of chemosensor C to
the Zn2+/Cu2+, aqueous solutions of EDTA disodium were
added to the complexed solution of C (2.0 Â 10À5 M) and
Zn2+ (8.0 Â 10À5 M)/Cu2+ (2.0 Â 10À5 M) in ethanol. As
expected, fluorescence signals the same as those of C are
completely restored (see ESIw Fig. S13 and S14), demonstrating
that the binding of C and Zn2+/Cu2+ is really chemically
reversible.
4 R. Kramer, Angew. Chem., Int. Ed., 1998, 37, 772; G. Muthaup,
A. Schlicksupp, L. Hess, D. Beher, T. Ruppert, C. L. Masters and
K. Beyreuther, Science, 1996, 271, 1406; R. A. Løvstad, BioMetals,
2004, 17, 111; K. J. Barnham, C. L. Masters and A. I. Bush, Nat.
Rev. Drug Discovery, 2004, 3, 205.
5 Z. Guo, W. Zhu and H. Tian, Macromolecules, 2010, 43, 739;
T. Liu, J. Hu, J. Yin, Y. Zhang, C. Li and S. Liu, Chem. Mater.,
2009, 21, 3439; Y. Zhao, X. Zhang, Z. Han, L. Qiao, C. Li, L. Jian,
G. Shen and R. Yu, Anal. Chem., 2009, 81, 7022; D. W. Domaille,
L. Zeng and C. J. Chang, J. Am. Chem. Soc., 2010, 132, 1194;
M. Kumar, A. Dhir and V. Bhalla, Org. Lett., 2009, 11, 2567;
H. S. Jung, M. Park, D. Y. Han, E. Kim, C. Lee, S. Ham and
J. S. Kim, Org. Lett., 2009, 11, 3378; H. J. Kim, J. Hong, A. Hong,
S. Ham, J. H. Lee and J. S. Kim, Org. Lett., 2008, 10, 1963;
Y. Zhou, F. Wang, Y. Kim, S. Kim and J. Yoon, Org. Lett.,
2009, 11, 4442; M. Yu, M. Shi, Z. Chen, F. Li, X. Li, Y. Gao, J. Xu,
H. Yang, Z. Zhou, T. Yi and C. Huang, Chem.–Eur. J., 2008, 14,
6892; Q. Zhao, F. Li and C. Huang, Chem. Soc. Rev., 2010, 39,
3007.
Based on the fluorimetric experiments (Fig. 5), we realized
that C would have higher binding affinity for Cu2+ than for
Zn2+. As expected, the addition of Cu2+ into ZnC solution
resulted in quick fluorescence changes (o2 min). The emission
intensity at about 375 nm of ZnC underwent a gradual decrease,
indicating that Cu2+ can displace Zn2+ to form the CuC complex
and ZnC could be a good ‘‘on-off’’ Cu2+ sensor candidate.
Further experiments demonstrate that anions have no influence
on metal displacement from Zn2+ to Cu2+ (see ESIw, Fig. S15).9
In summary, a Zn2+-selective ‘‘off-on’’ and Cu2+-selective
‘‘on-off’’ fluorescent chemosensor was designed and synthesized,
which displays a high selectivity for the Zn2+ and Cu2+
among relevant metal ions. The mechanism of fluorescence
change may be explained as follows: the addition of Zn2+
made the rotation of C–C among the aromatic rings inhibited
while the paramagnetic property and partially filled d shell of
Cu2+ led to the possibility of electron and/or energy transfer.
Further experiments indicate that the fluorescent signals of C
can be restored by the addition of EDTA disodium solution
into ZnC and CuC solutions respectively. Moreover, the
addition of Cu2+ can lead to the fluorescent emission intensity
6 M. M. Yu, Z. X. Li, L. H. Wei, D. H. Wei and M. S. Tang, Org.
Lett., 2008, 10, 5115.
7 F. Morgenroth and K. Mullen, Tetrahedron, 1997, 53, 15349; X. Xu,
S. Chen, G. Yu, C. Di, H. You, D. Ma and Y. Liu, Adv. Mater.,
2007, 19, 1281; M. Velusamy, K. R. J. Thomas, C. H. Chen,
J. T. Lin, Y. S. Wen, W. T. Hsieh, C. H. Lai and P. T. Chou,
Dalton Trans., 2007, 3025; R. C. Chiechi, R. J. Tseng, F. Marchioni,
Y. Yang and F. Wudl, Adv. Mater., 2006, 18, 325.
8 H. S. Jung, P. S. Kwon, J. W. Lee, J. I. Kim, C. S. Hong, J. W. Kim,
S. Yan, J. Y. Lee, J. H. Lee, T. Joo and J. S. Kim, J. Am. Chem.
Soc., 2009, 131, 2008.
9 Ł. Orze", L. Fiedor, M. Wolak, A. Kania, R. Eldik and G. Stochel,
Chem.–Eur. J., 2008, 14, 9419.
c
5800 Chem. Commun., 2011, 47, 5798–5800
This journal is The Royal Society of Chemistry 2011