2002
T. Horinouchi et al. / Bioorg. Med. Chem. Lett. 21 (2011) 2000–2002
which serves to drive the localization of NBDNO to mitochondria,
and green-fluorescent NBD dye. NBDNO is expected be a useful
tool for studies on the biological roles of NO.
Acknowledgments
Figure 2. A representative ESR spectrum of a solution containing Fe–MGD and
NBDNO after photoirradiation (325–385 nm) via a 50% ND filter. Samples contained
750 lM NBDNO, 60 mM MGD, and 15 mM FeSO4 in MilliQ water containing 7.5%
This work was supported in part by Grants-in-Aid for Scientific
Research on Innovative Areas (Research in a Proposed Research
Area) (No. 21117514 to H.N.), Grants-in-Aid for Scientific Research
(No. 22590103 to H.N.) from the Ministry of Education, Culture,
Sports Science, and Technology, Japan, and JST PRESTO program
(H.N.), and the Sasagawa Scientific Research Grant from the Japan
Science Society (No. 22-339, T.H.).
DMSO. ESR spectra were recorded after photoirradiation for 15 min with
a
modulation width of 1.25 G and a microwave power of 10 mW.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
Figure 3. HCT116 human colon cancer cells were stained with MitoRedÒ and
NBDNO, and observed with a confocal fluorescence microscope. The distribution of
MitoRedÒ (left, red), the distribution of NBDNO (center, green), and the merged
image (right) of the same field are shown.
1. (a) Ignarro, L. J.; Buga, G. M.; Wood, K. S.; Byrns, R. E.; Chaudhuri, G. Proc. Natl.
Acad. Sci. U.S.A. 1987, 84, 9265; (b) Palmer, R. M.; Ferige, A. G.; Moncada, S.
Nature 1987, 327, 524; (c) Stamler, J. S.; Singel, D. J.; Loscalzo, J. Science 1992,
258, 1898; (d) Murad, F. Angew. Chem., Int. Ed. 1999, 38, 1856; (e) Furchgott, R.
F. Angew. Chem., Int. Ed. 1999, 38, 1870.
2. For reviews, see: (a) Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.;
Janczuk, A. J. Chem. Rev. 2002, 102, 1091; (b) Huerta, S.; Chilka, S.; Bonavida, B.
Int. J. Oncol. 2008, 33, 909.
3. (a) Maragos, C. M.; Morley, D.; Wink, D. A.; Dunams, T. M.; Saavedr, J. E.;
Hoffmann, A.; Bove, A. A.; Isaac, L.; Hrabie, J. A.; Keefer, L. K. J. Med. Chem. 1991,
34, 3242; (b) Hrabie, J. A.; Klose, J. R.; Wink, D. A.; Keefer, L. K. J. Org. Chem.
1993, 58, 1472; (c) Saavedra, J. E.; Shami, P. J.; Wang, L. Y.; Davies, K. M.; Booth,
M. N.; Citro, M. L.; Keefer, L. K. J. Med. Chem. 2000, 43, 261; (d) Davies, K. M.;
Wink, D. A.; Saavedra, J. E.; Keefer, L. K. J. Am. Chem. Soc. 2001, 123, 5473.
4. (a) Thomas, G.; Ramwell, P. W. Biochem. Biophys. Res. Commun. 1989, 164, 889;
(b) Kato, M.; Nishino, S.; Ohno, M.; Fukuyama, S.; Kita, Y.; Hirasawa, Y.;
Nakanishi, I.; Takasugi, H.; Sakane, K. Bioorg. Med. Chem. Lett. 1996, 6, 33; (c)
Fukuyama, S.; Hirasawa, Y.; Kato, Y.; Nishino, S.; Maeda, K.; Kato, M.; Kita, Y. J.
Pharmacol. Exp. Ther. 1997, 282, 236.
Figure 4. HCT116 human colon cancer cells were treated with 10
and then photoirradiated (left), treated with 10 M NBDNO without irradiation
(center) or treated with 10 M DAR-4M AM and 10 M NBDNO with photoirra-
lM DAR-4M AM
l
l
l
diation (right), then subjected to confocal fluorescence microscopy.
5. (a) Namiki, S.; Arai, T.; Fujimori, K. J. Am. Chem. Soc. 1997, 119, 3840; (b)
Makings, L. R.; Tsien, R. Y. J. Biol. Chem. 1994, 269, 6282.
6. Shishido-Silvia, M.; Ganzarolli de Oliveira, M. Prog. React. Kinet. 2001, 26, 239.
7. (a) Suzuki, T.; Nagae, O.; Kato, Y.; Nakagawa, H.; Fukuhara, K.; Miyata, N. J. Am.
Chem. Soc. 2005, 127, 11720; (b) Hishikawa, K.; Nakagawa, H.; Furuta, T.;
Fukuhara, K.; Tsumoto, H.; Suzuki, T.; Miyata, N. J. Am. Chem. Soc. 2009, 131,
7488.
mitochondria. For confocal microscopy, the cells were plated and
cultured for 2 days, and then treated with 10 lM NBDNO in the
same manner as in the colocalization experiment. DAR-4M AM
was loaded into the cells for 10 min and then the cells were irradi-
ated with UV-A light for 5 min with the same irradiating apparatus
and conditions as used for the ESR experiment. Confocal micro-
scopic observation revealed that the cells showed red fluorescence
derived from DAR-4M T only when exposed to both NBDNO and
UV light. This suggested that NBDNO released NO in the cells upon
photoirradiation (Fig. 4), that is, it indeed serves as a photocontrol-
lable NO donor.
8. Callari, F. L.; Sortino, S. Chem. Commun. 1971, 2008.
9. (a) Hortelano, S. FEBS Lett 1997, 410, 373; (b) Choi, B. M.; Pae, H. O.; Jang, S. I.;
Kim, Y. M.; Chung, H. T. J. Biochem. Mol. Biol. 2002, 35, 116; (c) Tarr, J. M.;
Gleton, P. E.; Winyard, P. G. Curr. Pharm. Des. 2006, 12, 4445.
10. Barsoum, M. J. et al EMBO J. 2006, 25, 3900.
11. Cho, D. H. et al Science 2009, 324, 102.
12. (a) Lacza, Z.; Pankotai, E.; Busija, D. W. Front Biosci. 2009, 1, 4436; (b) Navarro,
A. et al Adv. Drug. Deliv. Rev. 2008, 60, 1534.
13. Coulter, C. V.; Kelso, G. F.; Lin, T. K.; Smith, R. A.; Murphy, M. P. Free Radical Biol.
Med. 2000, 28, 1547.
14. (a) Yasuzaki, Y. et al Biochem. Biophys. Res. Commun. 2010, 397, 181; (b) Hailey,
D. W. et al Cell 2010, 141, 656.
15. Kojima, H.; Hirotani, M.; Nakatsubo, N.; Kikuchi, K.; Urano, Y.; Higuchi, T.;
Hirata, Y.; Nagano, T. Anal. Chem. 2001, 73, 1967.
We have demonstrated specific photoinduced NO generation in
mitochondria of living cells from NBDNO, a 2,6-dimethylnitroben-
zene derivative bearing both a triphenylphosphonium moiety,