S. Brahma et al. / Inorganica Chimica Acta 372 (2011) 62–70
69
entering the molecule into interporphyrin cavity to form the twee-
zer structures, thus producing only the 1:2 anti-2 (PDAB)2 and
ꢂ
anti-2 (CNPY)2. Single crystal X-ray structures of both tweezer-
ꢂ
2 ODAB and anti-2 (CNPY)2 form stabilized in the same bispor-
ꢂ
ꢂ
phyrin ligand 1 are reported here, for the first time. The Zn
Zn
ꢂꢂꢂ
non bonding distances are 5.55 and 10.01 Å, respectively in tweezer
and anti form. Although the average Zn–N(p) distances are compa-
rable for both the form, Zn–N(L) distances are longer in tweezer
compared to anti conformation. Also, the displacement of Zn from
the mean porphyrin planes (24 atoms) are much less in anti com-
pared to the tweezer form.
Acknowledgments
We are thankful to the Department of Science and Technology,
Government of India (and CSIR, New Delhi) for financial support.
S.B. and S.A.I. thank CSIR, India for their fellowships. We also thank
Prof. P. Sen for some valuable advice in binding constant
determinations.
Appendix A. Supplementary material
ESI-MS spectra of tweezer-2 ODAB (Fig. S1) and anti-
ꢂ
2 (ODAB)2 (Fig. S2), UV–Vis spectra of anti-2 (CNPY)2 and anti-
ꢂ
ꢂ
2 (PDAB)2 (Fig. S3), a view of tweezer-2 ODAB highlighting 1,2-
ꢂ
ꢂ
diaminobenzene (Fig. S4), packing diagrams of tweezer-2 ODAB
ꢂ
(Fig. S5) and anti-2 (CNPY)2 (Fig. S6). CCDC 764422 and 764423
contain the supplementary crystallographic data for complexes
tweezer-2 ODAB and anti-2 (CNPY)2, respectively. These data
can be obtained free of charge from The Cambridge Crystallo-
Supplementary data associated with this article can be found, in
ꢂ
Fig. 11. (A) Normal plot, (B) linear-log plot for the determination of stability
constant of binding 1,4-diaminobenzene (PDAB) with 2 at 295 K. The solid lines are
the best fit.
ꢂ
complex. As observed in the X-ray structure, Zn–N(L) distances are
longer by ꢄ0.09 Å in tweezer-2 ODAB compared to tweezer-
ꢂ
References
2 DACH which also suggestive of relatively weaker binding of
ꢂ
ODAB. However, attractive
the guest ligand and host porphyrin also contributes towards the
p
–
p
and CH–
p
interactions between
[1] J.P. Collman, P.S. Wagenknecht, J.E. Hutchison, Angew. Chem., Int. Ed. Engl.
33(1994) 1537.
[2] I. Beletskaya, V.S. Tyurin, A.Y. Tsivadze, R. Guilard, C. Stern, Chem. Rev. 109
(2009) 1659.
[3] P.D. Harvey, C. Stern, C.P. Gros, R. Guilard, Coord. Chem. Rev. 251 (2007) 401.
[4] J. Rosenthal, D.G. Nocera, Acc. Chem. Res. 40 (2007) 543.
[5] J. Rosenthal, J. Bachman, J.L. Dempsey, A.J. Esswein, T.G. Gray, J.M. Hodgkiss,
D.R. Manke, T.D. Luckett, B.J. Pistorio, A.S. Veige, D.G. Nocera, Coord. Chem. Rev.
249 (2005) 1316.
stability of tweezer-2 ODAB and tweezer-2 DACH, respectively,
ꢂ
ꢂ
but to the nearly equal extent. The reduced basicity [43] of the aro-
matic diamine (ODAB) compared to aliphatic diamine (such as
DACH) must have contributed significantly towards the reduced
stability of tweezer-2 ODAB reported here. It is, however, interest-
ꢂ
ing to note that in the case of 1,4-diaminobenzene/4-CN-pyridine,
the binding of ligand results an unfavorable geometry which pre-
vents the entering of the ligand into the interporphyrin cavity to
form a tweezer structure, thus producing only 1:2 anti-structure
even at low ligand concentrations as observed here.
[6] V.V. Borovkov, G.A. Hembury, Y. Inoue, Acc. Chem. Res. 37 (2004) 449.
[7] M. Tanaka, K. Ohkubo, C.P. Gros, R. Guilard, S. Fukuzumi, J. Am. Chem. Soc. 128
(2006) 14625.
´
[8] A.G. Alvarez, A. Frontera, P. Ballester, J. Phys. Chem. B. 113 (2009) 11479.
[9] P. Ballester, A.I. Oliva, A. Costa, P.M. Deya‘, A. Frontera, R. M. Gomila, C.A.
Hunter, J. Am. Chem. Soc. 128 (2006) 5560.
[10] A. Hosseini, S. Taylor, G. Accorsi, N. Armaroli, C.A. Reed, P.D.W. Boyd, J. Am.
Chem. Soc. 128 (2006) 15903.
4. Conclusions
[11] T. Haino, T. Fujii, Y. Fukazawa, J. Org. Chem. 71 (2006) 2572.
[12] T.E. Clement, D.J. Nurco, K.M. Smith, Inorg. Chem. 37 (1998) 1150.
[13] G. Pognon, J.A. Wytko, P.D. Harvey, J. Weiss, Chem. Eur. J. 15 (2009) 524.
[14] Z. Zhou, C. Cao, Z. Yin, Q. Liu, Org. Lett. 11 (2009) 1781.
[15] M.J. Frampton, H. Akdas, A.R. Cowley, J.E. Rogers, J.E. Slagle, P.A. Fleitz, M.
Drobizhev, A. Rebane, H.L. Anderson, Org. Lett. 7 (2005) 5365.
[16] X. Huang, N. Fujioka, G. Pescitelli, F.E. Koehn, R.T. Williamson, K. Nakanishi, N.
Berova, J. Am. Chem. Soc. 124 (2002) 10320.
We have synthesized and structurally characterized both the
tweezer and anti form induced by axial ligands in a Zn-bisporphyrin
bridged by a highly flexible ethane spacer. The spacer gives the
compound flexibility for adjusting the distance between the two
porphyrin units in a single molecular framework. Stepwise addi-
tion of 1,2-diaminobenzene to Zn-bisporphyrin, 2, produces both
tweezer-2 ODAB and anti-2 (ODAB)2 species depending on the
[17] A. Takai, C.P. Gros, J.-M. Barbe, R. Guilard, S. Fukuzumi, Chem. Eur. J. 15 (2009)
3110.
[18] V.V. Borovkov, I. Fujii, A. Muranaka, G.A. Hembury, T. Tanaka, A. Ceulemans, N.
Kobayashi, Y. Inoue, Angew. Chem., Int. Ed. Engl. 43 (2004) 5481.
[19] C.J. Chang, Z.-H. Loh, Y. Deng, D.G. Nocera, Inorg. Chem. 42 (2003) 8262.
[20] V.V. Borovkov, Y. Inoue, Eur. J. Org. Chem. (2009) 189.
[21] V.V. Borovkov, J.M. Lintuluoto, H. Sugeta, M. Fujiki, R. Arakawa, Y. Inoue, J. Am.
Chem. Soc. 124 (2002) 2993.
[22] V.V. Borovkov, J.M. Lintuluoto, G.A. Hembury, M. Sugiura, R. Arakawa, Y. Inoue,
J. Org. Chem. 68 (2003) 7176.
[23] I. Fujii, V.V. Borovkov, Y. Inoue, Anal. Sci. 22 (2006) X77.
[24] T. Carofiglio, E. Lubian, I. Menegazzo, G. Saielli, A. Varotto, J. Org. Chem. 74
(2009) 9034.
ꢂ
ꢂ
concentration of the axial ligand and thus exhibit two major equi-
librium steps: first, guest ligation leading to formation of the 1:1
host–guest tweezer structure (K1) and second, guest molecule liga-
tion (K2) forming the anti bis ligated species. K1 and K2 are obtained
by nonlinear curve-fitting and are found to be 1.82 ꢀ 103Mꢁ1 and
1.34 ꢀ 102 Mꢁ1, respectively. It is interesting to note that addition
of 1,4-diaminobenzene (PDAB)/4-CN-pyridine (CNPY) to Zn-bis-
porphyrin results in an unfavorable geometry which prevents
[25] M. Tanasova, C. Vasileiou, O.O. Olumolade, B. Borhan, Chirality 21 (2009) 374.