Journal of Medicinal Chemistry
ARTICLE
(21) Smith, P. A.; Roberts, T. C.; Romesberg, F. E. Broad spectrum
antibiotic activity of the arylomycin natural products is masked by
natural target mutations. Chem. Biol. 2010, 17, 1223–1231.
(22) Schechter, I.; Berger, A. On the size of the active site in
proteases. I. Papain. Biochem. Biophys. Res. Commun. 1967, 27, 157–162.
(23) Paetzel, M.; Goodall, J. J.; Kania, M.; Dalbey, R. E.; Page,
M. G. P. Crystallographic and biophysical analysis of a bacterial signal
peptidase in complex with a lipopeptide-based inhibitor. J. Biol. Chem.
2004, 279, 30781–30790.
(24) Paetzel, M.; Dalbey, R. E.; Strynadka, N. C. Crystal structure
of a bacterial signal peptidase apoenzyme. J. Biol. Chem. 2002,277, 9512–9519.
(25) Paetzel, M.; Dalbey, R. E.; Strynadka, N. C. Crystal structure of
a bacterial signal peptidase in complex with a beta-lactam inhibitor.
Nature 1998, 396, 186–190.
(43) Czaran, T. L.; Hoekstra, R. F.; Pagie, L. Chemical warfare
between microbes promotes biodiversity. Proc. Natl. Acad. Sci. U.S.A.
2002, 99, 786–790.
(44) Lynch, M. The frailty of adaptive hypotheses for the origins of
organismal complexity. Proc. Natl. Acad. Sci. U.S.A. 2007, 104 (Suppl. 1),
8597–8604.
(45) Allen, N. E.; LeTourneau, D. L.; Hobbs, J. N., Jr. The role of
hydrophobic side chains as determinants of antibacterial activity of
semisynthetic glycopeptide antibiotics. J. Antibiot. (Tokyo) 1997,
50, 677–684.
(46) Chen, L.; Yuan, Y.; Helm, J. S.; Hu, Y.; Rew, Y.; Shin, D.; Boger,
D. L.; Walker, S. Dissecting ramoplanin: mechanistic analysis of
synthetic ramoplanin analogues as a guide to the design of improved
antibiotics. J. Am. Chem. Soc. 2004, 126, 7462–7463.
(26) Luo, C.; Roussel, P.; Dreier, J.; Page, M. G.; Paetzel, M.
Crystallographic analysis of bacterial signal peptidase in ternary complex
with arylomycin A2 and a beta-sultam inhibitor. Biochemistry 2009,
48, 8976–8984.
(27) Beauregard, D. A.; Williams, D. H.; Gwynn, M. N.; Knowles, D. J.
Dimerization and membrane anchors in extracellular targeting of vanco-
mycin group antibiotics. Antimicrob. AgentsChemother. 1995, 39, 781–785.
(28) Breukink, E.; de Kruijff, B. Lipid II as a target for antibiotics.
Nat. Rev. Drug Discovery 2006, 5, 321–332.
(29) Kim, S. J.; Schaefer, J. Hydrophobic side-chain length deter-
mines activity and conformational heterogeneity of a vancomycin
derivative bound to the cell wall of Staphylococcus aureus. Biochemistry
2008, 47, 10155–10161.
(30) Nagarajan, R. Structureꢀactivity relationships of vancomycin-type
glycopeptide antibiotics. J. Antibiot. (Tokyo) 1993, 46, 1181–1195.
(31) Thennarasu, S.; Lee, D. K.; Tan, A.; Prasad Kari, U.;
Ramamoorthy, A. Antimicrobial activity and membrane selective inter-
actions of a synthetic lipopeptide MSI-843. Biochim. Biophys. Acta 2005,
1711, 49–58.
(32) Majerle, A.; Kidric, J.; Jerala, R. Enhancement of antibacterial
and lipopolysaccharide binding activities of a human lactoferrin peptide
fragment by the addition of acyl chain. J. Antimicrob. Chemother. 2003,
51, 1159–1165.
(33) Rustici, A.; Velucchi, M.; Faggioni, R.; Sironi, M.; Ghezzi, P.;
Quataert, S.; Green, B.; Porro, M. Molecular mapping and detoxification of
the lipid A binding site by synthetic peptides. Science 1993, 259, 361–365.
(34) Dufour, J.; Neuville, L.; Zhu, J. P. Total synthesis of arylomycin
A(2), a signal peptidase I (SPase I) inhibitor. Synlett 2008, 15, 2355–2359.
(35) Heller, H.; Schaefer, M.; Schulten, K. Molecular dynamics
simulation of a bilayer of 200 lipids in the gel and in the liquid crystal
phase. J. Phys. Chem. 1993, 97, 8343–8360.
(36) Wang, Y.; Bruckner, R.; Stein, R. L. Regulation of signal
peptidase by phospholipids in membrane: characterization of phospho-
lipid bilayer incorporated Escherichia coli signal peptidase. Biochemistry
2004, 43, 265–270.
(37) van Klompenburg, W.; Paetzel, M.; de Jong, J. M.; Dalbey, R. E.;
Demel, R. A.; von Heijne, G.; de Kruijff, B. Phosphatidylethanolamine
mediates insertion of the catalytic domain of leader peptidase in
membranes. FEBS Lett. 1998, 431, 75–79.
(47) Cooper, M. A.; Williams, D. H. Binding of glycopeptide
antibiotics to a model of a vancomycin-resistant bacterium. Chem. Biol.
1999, 6, 891–899.
(48) Dong, S. D.; Oberthur, M.; Losey, H. C.; Anderson, J. W.; Eggert,
U. S.; Peczuh, M. W.; Walsh, C. T.; Kahne, D. The structural basis for
induction of VanB resistance. J. Am. Chem. Soc. 2002, 124, 9064–9065.
(49) Kerns, R.; Dong, S. D.; Fukuzawa, S.; Carbeck, J.; Kohler, J.;
Silver, L.; Kahne, D. The role of hydrophobic substituents in the
biological activity of glycopeptide antibiotics. J. Am. Chem. Soc. 2000,
122, 12608–12609.
(50) Mackay, J. P.; Gerhard, U.; Beauregard, D. A.; Maplestone,
R. A.; Williams, D. H. Dissection of the contributions toward dimeriza-
tion of glycopeptide antibiotics. J. Am. Chem. Soc. 1994, 116, 4573–4580.
(51) Maffioli, S. I.; Ciabatti, R.; Romano, G.; Marzorati, E.;
Preobrazhenskaya, M.; Pavlov, A. Synthesis and antibacterial activity
of alkyl derivatives of the glycopeptide antibiotic A40926 and their
amides. Bioorg. Med. Chem. Lett. 2005, 15, 3801–3805.
(52) Nagarajan, R.; Schabel, A. A.; Occolowitz, J. L.; Counter, F. T.;
Ott, J. L. Synthesis and antibacterial activity of N-acyl vancomycins.
J. Antibiot. (Tokyo) 1988, 41, 1430–1438.
(53) Nagarajan, R.; Schabel, A. A.; Occolowitz, J. L.; Counter, F. T.;
Ott, J. L.; Felty-Duckworth, A. M. Synthesis and antibacterial evaluation
of N-alkyl vancomycins. J. Antibiot. (Tokyo) 1989, 42, 63–72.
(54) Rodriguez, M. J.; Snyder, N. J.; Zweifel, M. J.; Wilkie, S. C.;
Stack, D. R.; Cooper, R. D.; Nicas, T. I.; Mullen, D. L.; Butler, T. F.;
Thompson, R. C. Novel glycopeptide antibiotics: N-alkylated deriva-
tives active against vancomycin-resistant enterococci. J. Antibiot. (Tokyo)
1998, 51, 560–569.
(55) Sharman, G. J.; Try, A. C.; Dancer, R. J.; Cho, Y. R.; Staroske,
T.; Bardsley, B.; Maguide, A.; Cooper, M. A.; O’Brien, D. P.; Williams,
D. H. The roles of dimerization and membrane anchoring in activity of
glycopeptide antibiotics against vancomycin-resistant bacteria. J. Am.
Chem. Soc. 1997, 1997, 12041–12047.
(56) Albelo, S. T.; Domenech, C. E. Carbons from choline present in
the phospholipids of Pseudomonas aeruginosa. FEMS Microbiol. Lett.
1997, 156, 271–274.
(57) Wilderman, P. J.; Vasil, A. I.; Martin, W. E.; Murphy, R. C.;
Vasil, M. L. Pseudomonas aeruginosa synthesizes phosphatidylcholine by
use of the phosphatidylcholine synthase pathway. J. Bacteriol. 2002,
184, 4792–4799.
(38) Baltz, R. H. Marcel Faber Roundtable: Is our antibiotic pipeline
unproductive because of starvation, constipation or lack of inspiration?
J. Ind. Microbiol. Biotechnol. 2006, 33, 507–513.
(39) Martinez, J. L. The role of natural environments in the
evolution of resistance traits in pathogenic bacteria. Proc. Biol. Sci.
2009, 276, 2521–2530.
(58) Sohlenkamp, C.; Lopez-Lara, I. M.; Geiger, O. Biosynthesis of
phosphatidylcholine in bacteria. Prog. Lipid Res. 2003, 42, 115–162.
(59) Cronan, J. E.; Vagelos, P. R. Metabolism and function of the
membrane phospholipids of Escherichia coli. Biochim. Biophys. Acta 1972,
265, 25–60.
(40) D’Costa, V. M.; Griffiths, E.; Wright, G. D. Expanding the soil
antibiotic resistome: exploring environmental diversity. Curr. Opin.
Microbiol. 2007, 10, 481–489.
(41) Allen, H. K.; Donato, J.; Wang, H. H.; Cloud-Hansen, K. A.;
Davies, J.; Handelsman, J. Call of the wild: antibiotic resistance genes in
natural environments. Nat. Rev. Microbiol. 2010, 8, 251–259.
(42) Laskaris, P.; Tolba, S.; Calvo-Bado, L.; Wellington, L. Coevolu-
tion of antibiotic production and counter-resistance in soil bacteria.
Environ. Microbiol. 2010, 12, 783–796.
(60) Brundish, D. E.; Shaw, N.; Baddiley, J. The phospholipids of
Pneumococcus I-192R, A.T.C.C. 12213. Some structural rearrange-
ments occurring under mild conditions. Biochem. J. 1967, 104, 205–211.
(61) Mechin, L.; Dubois-Brissonnet, F.; Heyd, B.; Leveau, J. Y.
Adaptation of Pseudomonas aeruginosa ATCC 15442 to didecyldimethyl-
ammonium bromide induces changes in membrane fatty acid composi-
tion and in resistance of cells. J. Appl. Microbiol. 1999, 86, 859–866.
(62) Oliver, J. D.; Colwell, R. R. Extractable lipids of Gram-negative
marine bacteria: phospholipid composition. J. Bacteriol. 1973, 114, 897–908.
4962
dx.doi.org/10.1021/jm1016126 |J. Med. Chem. 2011, 54, 4954–4963