N.S. Chowdhury et al. / Inorganica Chimica Acta 372 (2011) 183–190
189
Science and Technology, New Delhi, India (Grant No. SR/S1/IC-29/
2009) is gratefully acknowledged. NSC thanks the University
Grants Commission, New Delhi for her fellowship and DKS thanks
the Council of Scientific and Industrial Research, New Delhi, for his
fellowship [Grant No. 9/096(0511)/2006-EMR I]. MGBD thanks
EPSRC (UK) and the University of Reading for funds for the Image
Plate System. We thank Prof. Chittaranjan Sinha for his help in
recording the IR spectra, and Dr. Kajal K. Rajak for his help with
the DFT studies.
Appendix A. Supplementary data
Partial molecular orbital diagrams of 2-CH3 (Fig. S1), cyclic vol-
tammogram of the 1-Cl complex (Fig. S2), least-squares plots of Epa
values of the first oxidation versus
r for the 1-R complexes
(Fig. S3), and an alternative mechanism behind formation of the
1-R and 2-R complexes (Scheme S1) have been deposited. CCDC
798418 and 798419 contain the supplementary crystallographic
data for this paper. These data can be obtained free of charge from
article can be found, in the online version, at doi:10.1016/
References
[1] (a) T.S. Lobana, R. Sharma, G. Bawa, S. Khanna, Coord. Chem. Rev. 253 (2009)
977;
(b) A.G. Quiroga, C.N. Raninger, Coord. Chem. Rev. 248 (2004) 119;
(c) J.R. Dilwarth, P. Amold, D. Morales, Y.L. Wong, Y. Zheng, Modern Coord.
Chem. (2002) 217;
Fig. 3. Contour plots of HOMO and LUMO of complex 1-CH3.
(d) D.X. West, A.E. Liberta, S.B. Padhye, R.C. Chikate, P.B. Sonawane, A.S.
Kumbhar, R.G. Yerande, Chem. Rev. 123 (1993) 49;
(e) D.X. West, S.B. Padhye, P.B. Sonawane, Struct. Bond. 76 (1992) 1;
(f) I. Haiduc, C. Silvestru, Coord. Chem. Rev. 99 (1990) 253;
(g) S.B. Padhye, G.B. Kaffman, Coord. Chem. Rev. 63 (1985) 127;
(h) M.J.M. Campbell, Coord. Chem. Rev. 15 (1975) 279.
[2] (a) A.C.F. Caires, Anticancer Agents Med. Chem. 7 (2007) 484;
(b) T. Wang, Z. Guo, Curr. Med. Chem. 13 (2006) 525;
(c) H. Beraldo, D. Gambino, Mini Rev. Med. Chem. 4 (2004) 31;
[d] E.M. Jouad, X.D. Thanh, G. Bouet, S. Bonneau, M.A. Khan, Anticancer Res. 22
(2002) 1713;
Table 4
Composition of selected molecular orbitals.
Compound
Contributing fragments*
% Contribution of fragments to
HOMO
LUMO
1-CH3
Ru
19.31
77.57
2.08
7.53
82.79
7.75
tsc-CH3
PPh3
CO
(e) M.B. Ferrari, F. Bisceglie, G. Pelosi, M. Sassi, P. Tarasconi, M. Cornia, S.
Capacchi, R. Albertini, S. Pinelli, J. Inorg. Biochem. 90 (2002) 113;
(f) A.R. Cowly, J.R. Dilworth, P.S. Donnely, E. Labisbal, A. Sousa, J. Am. Chem.
Soc. 124 (2002) 5270;
(g) R.I. Maurer, P.J. Blower, J.R. Dilworth, C.A. Reynolds, Y. Zheng, G.E.D. Mullen,
J. Med. Chem. 45 (2002) 1420;
1.04
1.93
2-CH3
Ru
6.66
4.09
tsc-CH3
PPh3
CO
81.37
0.80
93.88
1.12
11.17
0.91
(h) J. Patole, S. Dutta, S.B. Padhye, E. Sinn, Inorg. Chim. Acta 318 (2001) 207;
(i) Z. Iakovidou, A. Papageorgiou, M.A. Demertzis, E. Mioglou, D. Mourelatos, A.
Kotsis, P.N. Yadav, D. Kovala-Demertzi, Anticancer Drugs 12 (2001) 65.
[3] (a) S. Basu, R. Acharyya, F. Basuli, S.M. Peng, G.H. Lee, G. Mostafa, S.
Bhattacharya, Inorg. Chim. Acta 363 (2010) 2848;
*
tsc-CH3 means the coordinated thiosemicarbazone ligand.
(b) S. Dutta, F. Basuli, A. Castineiras, S.M. Peng, G.H. Lee, S. Bhattacharya, Eur. J.
Inorg. Chem. (2008) 4538;
4. Conclusions
(c) S. Halder, S.M. Peng, G.H. Lee, T. Chatterjee, A. Mukherjee, S. Dutta, U.
Sanyal, S. Bhattacharya, New J. Chem. 32 (2008) 105;
(d) S. Halder, R.J. Butcher, S. Bhattacharya, Polyhedron 26 (2007) 2741;
(e) S. Basu, R. Acharyya, W.S. Sheldrick, H. Mayer-Figge, S. Bhattacharya, Struct.
Chem. 18 (2007) 209;
(f) R. Acharyya, S. Dutta, F. Basuli, S.M. Peng, G.H. Lee, Larry R. Falvello, S.
Bhattacharya, Inorg. Chem. 45 (2006) 1252;
(g) S. Dutta, F. Basuli, S.M. Peng, G.H. Lee, S. Bhattacharya, New J. Chem. 26
(2002) 1607;;
(h) I. Pal, F. Basuli, T.C.W. Mak, S. Bhattacharya, Angew. Chem., Int. Ed. 40
(2001) 2923;
(i) F. Basuli, S.M. Peng, S. Bhattacharya, Inorg. Chem. 39 (2000) 1120;
(j) F. Basuli, M. Ruf, C.G. Pierpont, S. Bhattacharya, Inorg. Chem. 37 (1998)
6113;
The present study shows that [Ru(PPh3)3(CO)(H)Cl], containing
a Ru–H bond, can successfully mediate C–H bond activation of the
4-R-benzaldehyde thiosemicarbazones (L-R) affording a group of
orgnoruthenium complexes (1-R), where the thiosemicarbazones
are coordinated to ruthenium in the C,N,S-mode (III). A second
group of ruthenium complexes (2-R) are also obtained from the
same reaction, in much lower yield, where the thiosemicarbazones
are coordinated to ruthenium in the N,S-mode (I). Complexes of
both the types have shown promise to serve as catalysts for useful
organic transformations, and these catalytic reactions are currently
under investigation.
(k) F. Basuli, S.M. Peng, S. Bhattacharya, Inorg. Chem. 36 (1997) 5645.
[4] S. Halder, R. Acharyya, F. Basuli, S.M. Peng, G.H. Lee, S. Bhattacharya,
unpublished results.
[5] (a) O. Daugulis, H.Q. Do, D. Shabashov, Acc. Chem. Res. 42 (2009) 1074;;
(b) N.A. Foley, J.P. Lee, Z. Ke, T.B. Gunnoe, T.R. Cundari, Acc. Chem. Res. 42
(2009) 585;
Acknowledgements
The authors thank the reviewers for their constructive com-
ments, which have been helpful in preparing the revised manu-
script. Financial assistance received from the Department of
(c) B.H. Lipshutz, Y. Yamamoto, Chem. Rev. 108 (2008) 2793;
(d) W. Leis, H.A. Mayer, W.C. Kaska, Coord. Chem. Rev. 252 (2008) 1787;
(e) J.C. Lewis, R.G. Bergman, J.A. Ellman, Acc. Chem. Res. 41 (2008) 1013;