corresponding Michael addition products in high yields and
enantioselectivities (up to 98%).
evaluated in the catalytic asymmetric Michael addition of 2-
hydroxy-1,4-naphthoquinone to nitroalkenes, which afforded the
chiral nitroalkylated naphthoquinone derivatives in high yields
(up to 93%) and enantio-selectivities (up to 99% ee) . Because of
the highly enantioselective efficiency and fine tunability of these
bifunctional thioureas, further application in asymmetric
organocatalysis has great potential, which is currently under
investigation.
Based on the experimental results described above, a plausible
transition state was proposed in Figure 2. We envisioned that
catalyst 1d provide dual activation through hydrogen bonding
interactions like similar bifunctional thiourea catalysts.[10] The 2-
hydroxy-1,4-naphthoquinone is deprotonated by the basic
nitrogen atom of the tertiary amine, while the nitroalkene is
activited by the thiourea moiety through double hydrogen
bonding between the NH groups and the nitro group. There are
two type of transition states formed in this stage (as showed in
Figure 2.), but TS-1 is favorable, The nucleophile attacks the
fixed nitroalkene from the Si-face to afford the R-enantiomer as
the major product.
Acknowledgments
The authors are grateful for financial support from the National
Natural Science Foundation of China (21372098) and the Jilin
Province Science & Technology Development Program (nos.
20150203006GX and 20140307004GX).
Table 3. Scope of the Michael addition of 2-hydroxy-1,4-
Appendix A. Supplementary data
naphthoquinone to nitroalkenes
O
O
O
R
Supplementary data to this article can be found online at
NO2
1d
3 mol% catalyst
PhCH3, 0 o
NO2
+
R
C
OH
OH
References and notes
O
2
3
4
[1] (a) Doyle, A. G.; Jacobsen, E. N. Chem Rev. 2007,107,5713–5743.
(b) Zhang, Z.; Schreiner, P. R. Chem Soc Rev. 2009,38,1187−1198.
(c) Busschaert, N.; Caltagirone, C.; Rossom, W. V.; Gale, P. A. Chem
Rev. 2015,115,8038−8155.
Entry[a]
R (4)
Time
[h]
48
72
72
72
72
72
48
48
96
96
96
96
24
24
24
24
24
Yield
[%][b]
72
71
75
75
78
80
86
91
56
54
73
62
93
84
89
ee
[%][c]
>99
>99
98
1
2
3
4
5
6
7
8
Ph (4a)
4-CNC6H4 (4b)
4-CF3C6H4 (4c)
4-FC6H4 (4d)
4-ClC6H4 (4e)
4-BrC6H4 (4f)
4-CH3C6H4 (4g)
4-CH3OC6H4 (4h)
2-BrC6H4 (4i)
3-BrC6H4 (4j)
3-CH3C6H4 (4k)
2-Furyl (4l)
n-Propyl (4m)
i-Propyl (4n)
i-Butyl (4o)
Phenylethyl (4p)
Cyclohexyl (4q)
(d) Connon, S. J. Chem. - Eur. J. 2006,12,5418−5427.
(e) Li H, Wang Y, Tang L, Deng L. J Am Chem Soc. 2004,126,9906-
9907.
98
98
98
98
>99
>99
99
>99
96
99
99
97
98
(f) Hu B, Deng L. Angew Chemie Int Ed. 2018,57,2233–2237.
[2] (a) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006,45,1520-
1543.
(b) Peterson, E. A.; Jacobsen, E. N. Angew Chem In. Ed. 2009,48,
6328−6331.
(c) Auvil, T. J.; Schafer, A. G.; Mattson, A. E. Eur J Org Chem. 2014,
2014,2633−2646.
(d) Fang, X.; Wang, C.-J. Chem Commun. 2015,51,1185–1198.
(e) Siau, W.-Y.; Wang, J. Catal Sci Technol. 2011,1,1298−1310.
(f) Serdyuk, O. V.; Heckel, C. M.; Tsogoeva, S. B. Org. Biomol. Chem.
2013,11,7051−7071.
(g) Somanathan, R.; Chávez, D.; Servin, F. A.; Romero, J. A.; Navarrete,
A.; Parra-Hake, M.; Aguirre, G.; Anaya de Parodi, C.; González, J.
Curr Org Chem. 2012,16,2440−2461.
9
10
11
12
13
14
15
16
17
88
90
98
[a] Unless noted otherwise, reactions were carried out with: 2-hydroxy-1,4-
naphthoquinone 2 (0.2 mmol), β-nitroalkenes 3 (0.24 mmol) and catalyst
1d (0.006 mmol) in toluene (4 mL) at 0 oC.
[b] Isolated yields after column chromatography purification.
[c] Determined by HPLC using a Daicel Chiralcel OJ-H, AD-H or OD-H
column.
(h) Fang, X.; Wang, C. J. Chem Commun. 2015,51,1185−1197.
(i) Wang, Y.; Lu, H.; Xu, P.-F. Acc Chem Res. 2015,48,1832−1844.
[3] (a)Zhong F, Han X, Wang Y, Lu Y. Angew Chemie Int Ed. 2011,50,
7837–7841.
(c)Dou X, Han X, Lu Y. Chem - A Eur J. 2012,18,85–89.
(b) GX, Qu J. Chem Commun. 2012,48,5518–5520.
[4] For some catalytic asymmetry reaction of 2-hydroxy-1,4-
naphthoquinone, see:
O TBS
O TBS
S
S
N
H
N
H
N
H
N
H
N
N
H
O
(a)Kim Y, Lee J, Jung J, Kim SG. Tetrahedron Lett. 2019,60,1625–1630.
(b)Zhou E, Liu B, Dong C. Tetrahedron Asymmetry. 2014,25,181–186.
(c)Jiménez EI, Vallejo Narváez WE, Román-Chavarría CA, Vazquez-
Chavez J, Rocha-Rinza T, Hernández-Rodríguez M. J Org Chem.
2016,81,7419–7431.
(d)Zhang X, Chen YH, Tan B. Tetrahedron Lett. 2018,59,473–486.
(e)Jichu T, Inokuma T, Aihara K, Kohiki T, Nishida K, Shigenaga A,
Yamada K ichi, Otaka A. ChemCatChem. 2018,10,3402–3405.
(f)Jiménez EI, Narváez WEV, Rocha-Rinza T, Hernández-Rodríguez M.
Catal Sci Technol. 2017,7,4470–4477.
(g)Allingham MT, Bennett EL, Davies DH, Harper PM, Howard-Jones
A, Mehdar YTH, Murphy PJ, Thomas DA, Caulkett PWR, Potter D,
Lam CM, O’Donoghue AC. Tetrahedron. 2016,72,496–503.
(h)Kasaplar P, Rodríguez-Escrich C, Pericàs MA. Org Lett. 2013,15,
3498–3501.
O
O
H
O
O
O
N
N
O
O
O
O
TS-1 (favorable)
TS-2 (unfacorable)
Figure 2. Proposed transition state.
Conclusions
In summary, chiral bifunctional thioureas 1a-1h derived from
threonine were designed, synthesized and verified as highly
efficient organocatalysts in the asymmetric Michael addition of
2-hydroxy-1,4-naphthoquinone to nitroalkenes. The facile
introduction of siloxy groups into the chiral scaffold makes these
thioureas very flexible. The enantioselective efficiency were
(i)Kennedy CR, Lehnherr D, Rajapaksa NS, Ford DD, Park Y, Jacobsen
EN. J Am Chem Soc. 2016,138,13525–13528.
[5] Kogen H, Kiho T, Nakayama M, Furukawa Y, Kinoshita T, Inukai M. J
Am Chem Soc. 2000,122,10214–10215.
[6] L.-W. Xu, J. Luo, Y. Lu, Chem Commun. 2009,1807–1821