B. Tang et al.
708C for 1 h, and then the reaction proceeded under vacuum at 1608C
for 4 h. The cooled product was dissolved in dichloromethane, and recov-
ered by precipitation into an excess of mixed solvent comprising ethyl
ether and petroleum ether. The precipitate was redissolved in acetone
and precipitated into excess water, with the purified copolymers dried in
a vacuum oven at 408C for 24 h and then stored in a desiccator under
vacuum. The two copolymers were analyzed by H NMR spectroscopy at
room temperature. The degree of polymerization of the PLA was calcu-
lated by comparing the integral intensity of the characteristic resonance
[5] a) K. Setsukinai, Y. Urano, K. Kakinuma, H. J. Majima, T. Nagano,
J. Biol. Chem. 2003, 278, 3170–3175; b) N. W. Kooy, J. A. Royall, H.
Ischiropoulos, J. S. Beckman, Free Radical Biol. Med. 1994, 16, 149–
156; c) H. Possel, H. Noack, W. Augustin, G. Keilhoff, G. Wolf,
FEBS Lett. 1997, 416, 175–178.
[6] a) P. Li, T. Xie, X. Duan, F. Yu, X. Wang, B. Tang, Chem. Eur. J.
2009, 15, 1834–1840; b) C. A. Cohn, C. E. Pedigo, S. N. Hylton, S. R.
Simon, M. A. Schoonen, Geochem. Trans. 2009, 10, 8.
[7] D. Yang, H. L. Wang, Z. N. Sun, N. W. Chung, J. G. Shen, J. Am.
Chem. Soc. 2006, 128, 6004–6005.
[8] C. Song, Z. Ye, G. Wang, J. Yuan, Y. Guan, Chem. Eur. J. 2010, 16,
6464–6472.
[9] D. Wu, A. B. Descalzo, F. Weik, F. Emmerling, Z. Shen, X. Z. You,
K. Rurack, Angew. Chem. 2008, 120, 199; Angew. Chem. Int. Ed.
2008, 47, 193–197.
1
ꢀ
ꢀ
ꢀ
ꢀ
of the PLA at 5.2 ppm ( C(=O) CHACHTNUGRTENUNG( CH3 )) and PEG resonance at
3.64 ppm ( OCH2CH2 ) in the 1H NMR spectrum (Figure S11, Support-
ing Information). The amount of maleimide proton was calculated by
comparing the integral intensity of the characteristic resonance at
ꢀ
ꢀ
ꢀ
ꢀ
6.70 ppm and PEG resonance at 3.64 ppm ( OCH2CH2 ). MAL-PEG-
PLA (Mn =28.6 kD) was synthesized and used in this study.
[10] a) W. C. Wu, C. Y. Chen, Y. Tian, S. H. Jang, Y. Hong, Y. Liu, R.
Hu, B. Z. Tang, Y. T. Lee, C. T. Chen, W. C. Chen, A. K. Y. Jen,
Adv. Funct. Mater. 2010, 20, 1413–1423; b) K. Li, J. Pan, S. S. Feng,
A. W. Wu, K. Y. Pu, Y. Liu, B. Liu, Adv. Funct. Mater. 2009, 19,
3535–3542.
[11] a) H. Ow, D. R. Larson, M. Srivastava, B. A. Baird, W. W. Webb, U.
Wiesner, Nano Lett. 2005, 5, 113–117; b) Z. F. Li, E. Ruckenstein,
Nano Lett. 2004, 4, 1463–1467.
[12] a) R. Radi, Chem. Res. Toxicol. 1998, 11, 720–721; b) A. Denicola,
J. M. Souza, R. Radi, Proc. Natl. Acad. Sci. USA 1998, 95, 3566–
3577.
[13] G. Kim, Y. E. K. Lee, H. Xu, M. A. Philbert, R. Kopelman, Anal.
Chem. 2010, 82, 2165–2169.
[14] F. Q. Chen, D. Gerion, Nano Lett. 2004, 4, 1827–1832.
[15] J. L. Cohen, A. Almutairi, J. A. Cohen, M. Bernstein, S. L. Brody,
D. P. Schuster, J. M. J. Frꢂchet, Bioconjugate Chem. 2008, 19, 876–
881.
[16] a) V. A. Sethuraman, Y. H. Bae, J. Controlled Release 2007, 118,
216–224; b) B. Gupta, T. S. Levchenko, V. P. Torchilin, Adv. Drug
Delivery Rev. 2005, 57, 637–651.
Synthesis of the hybrid polypeptide–polymer–organic dye nanoprobe:
The CPPs-encoding nanoprobe loaded with two dyes was prepared by
nanoprecipitation and self-assembly.[18] Briefly, MPEG-PLA (9 mgmLꢀ1),
MAL-PEG-PLA (1 mgmLꢀ1), BzSe-Cy (0.5 mm), and IRhB (0.01 mm)
were dissolved in acetonitrile and together mixed dropwise into water,
giving a final polymer concentration of 1.0 mgmLꢀ1. The solution was
vortexed vigorously for 3 min followed by self-assembly under gentle stir-
ring for 2 h at room temperature, and the remaining organic solvent was
removed in a rotary evaporator at reduced pressure. The nanoparticles
were centrifuged at 14000ꢁg for 15 min and washed with deionized
water. The TAT peptide was conjugated to the maleimide on the PEG of
the micelles through a thioether linkage. The polymeric micelles in PBS,
with maleimide groups on the outside of the shell, were mixed with a
small molar excess of TAT peptide solution at pH 7.2 under a nitrogen
atmosphere. The mixture was stirred overnight in the dark at room tem-
perature. The TAT-conjugated micelles were then separated from un-
reacted TAT by using a PD10 column in PBS. Finally, the resulting solu-
tion was filtered with a 220 nm pore size cellulose acetate filter and
stored at 48C.
[17] a) S. Padmaja, G. L. Squadrito, J. N. Lemercier, R. Cueto, W. A.
Pryor, Free Radical Biol. Med. 1996, 21, 317–322; b) C. W. No-
gueira, G. Zeni, J. B. T. Rocha, Chem. Rev. 2004, 104, 6255–6285.
[18] a) O. C. Farokhzad, J. Cheng, B. A. Teply, I. Sherifi, S. Jon, P. W.
Kantoff, J. P. Richie, R. Langer, Proc. Natl. Acad. Sci. USA 2006,
103, 6315–6320; b) H. Chen, S. Kim, L. Li, S. Wang, K. Park, J. X.
Cheng, Proc. Natl. Acad. Sci. USA 2008, 105, 6596–6601.
[19] N. Nasongkla, E. Bey, J. Ren, H. Ai, C. Khemtong, J. S. Guthi, S. F.
Chin, A. D. Sherry, D. A. Boothman, J. Gao, Nano Lett. 2006, 6,
2427–2430.
Acknowledgements
This work was supported by the National Basic Research Program of
China (973 Program, 2007CB936000), National Natural Science Funds
for Distinguished Young Scholars (No. 20725518), National Key Natural
Science Foundation of China (No. 21035003), Natural Science Founda-
tion of Shandong Province in China (No. ZR2010BZ001), and Science
and Technology Development Programs of Shandong Province of China
(No. 2008GG30003012).
[20] G. Rainꢄ, T. Stçferle, C. Park, H. C. Kim, I. J. Chin, R. D. Miller,
R. F. Mahrt, Adv. Mater. 2010, 22, 3681–3684.
[21] M. Akbulut, P. Ginart, M. E. Gindy, C. Theriault, K. H. Chin, W. So-
boyejo, R. K. Prud’homme, Adv. Funct. Mater. 2009, 19, 718–725.
[22] D. Oushiki, H. Kojima, T. Terai, M. Arita, K. Hanaoka, Y. Urano, T.
Nagano, J. Am. Chem. Soc. 2010, 132, 2795–2801.
[23] S. S. Marla, J. Lee, J. T. Groves, Proc. Natl. Acad. Sci. USA 1997, 94,
14243–14248.
[1] a) G. Ferrer-Sueta, R. Radi, ACS Chem. Biol. 2009, 4, 161–177;
b) S. Goldstein, J. Lind, G. Merꢂnyi, Chem. Rev. 2005, 105, 2457–
2470; c) C. Szabꢃ, H. Ischiropoulos, R. Radi, Nat. Rev. Drug Discov-
ery 2007, 6, 662–680.
[24] C. Q. Li, L. J. Trudel, G. N. Wogan, Chem. Res. Toxicol. 2002, 15,
527–535.
[25] J. M. McCord, Science 1974, 185, 529–531.
[26] F. Song, X. Peng, E. Lu, Y. Wang, W. Zhou, J. Fan, Tetrahedron Lett.
2005, 46, 4817–4820.
[27] Y. Zhang, Q. Z. Zhang, L. S. Zha, W. L. Yang, C. C. Wang, X. G.
Jiang, S. K. Fu, Colloid Polym. Sci. 2004, 282, 1323–1328.
[2] a) P. Pacher, J. S. Beckman, L. Liaudet, Physiol. Rev. 2007, 87, 315–
424; b) J. S. Beckman, M. Carson, C. D. Smith, W. H. Koppenol,
Nature 1993, 364, 584–585; c) H. Ischiropoulos, J. S. Beckman, J.
Clin. Invest. 2003, 111, 163–169.
[3] a) C. Szabꢃ, H. Oshima, Nitric Oxide 1997, 1, 373–385; b) J. T.
Groves, Curr. Opin. Chem. Biol. 1999, 3, 226–235; c) R. P. Patel, J.
McAndrews, H. Sellak, R. C. White, H. Jo, B. A. Freeman, V. M.
Darley-Usmar, Biochim. Biophys. Acta Bioenerg. 1999, 1411, 385–
400.
[4] a) A. Gomes, E. Fernandes, J. L. Lima, J. Biochem. Biophys. Meth-
ods 2005, 65, 45–80; b) B. Halliwell, M. B. Whiteman, J. Pharmacol.
2004, 142, 231–255.
Received: January 15, 2011
Published online: May 17, 2011
6634
ꢀ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2011, 17, 6626 – 6634