P.V.V.N. Kishore et al. / Inorganica Chimica Acta 372 (2011) 321–326
325
of borane or air and moisture sensitive organoborane reagents with
References
pyrazole, our method of assembling this B2N4 heterocycle is more
facile. Moreover, in the present case we exclusively get the
cis-isomer probably due to the nature of the substituents present
on both boron and carbon atoms. By varying the groups on boron
and carbon atoms isolation of the trans isomer could be possible
and work in that direction is currently under progress.
[1] G.M.L. Cragg, J. Chem. Educ. 46 (1969) 794.
[2] S. Trofimenko, Chem. Rev. 93 (1993) 943.
[3] S. Trofimenko, Scorpionates. The Chemistry of Polypyrazolylborate Ligands,
Imperial College Press, London, 1999.
[4] S. Trofimenko, Polyhedron 23 (2004) 197.
[5] S. Trofimenko, J. Chem. Educ. 82 (2005) 1715.
[6] Scorpionate and Related Ligands, G.F. Ed. Parkin, Polyhedron Symposia-In-
Print Number 26, 23 (2004) 195.
Recently, we have investigated the reactions of phenolic pyra-
zoles with organostibonic acids wherein the presence of phenyl
or tert-butyl groups on the 5-position of the pyrazole ring led to
the formation of isostructural tetranuclear organoantimony oxo
clusters wherein the pyrazoles chelated to the metal atoms through
the O,N-end while the other N atom of the pyrazole is noncoordi-
nating [52]. But when arylstibonic acids were reacted with phenolic
pyrazoles with hydrogen on the 5-position of the pyrazole ring the
ligand bound to the Sb atoms through both chelating (O,N-) and
bridging (N,N-) mode. Herein, when phenolic pyrazole is reacted
with phenylboronic acid the substitution on the pyrazole ring
directs the structure of the products. When phenyl or tert-butyl
substituents are present the ligand binding mode is purely chelat-
ing (O,N-atoms) while the presence of hydrogen on the 5th position
of the pyrazole encourages both the chelating (O,N-) and bridging
(N,N-) mode. In the case of organoantimony oxo clusters both phe-
nyl and tert-butyl substituents on the pyrazole led to the isolation
of isostructural compounds whereas in the present case it varies
due to the difference in the solvent of crystallization employed
for 1 and 2. Earlier reports [59] on organoboron complexes suggest
that crystallization in chlorinated solvents or acetonitrile may lead
to isolation of oxo bridged boron dimers which is probably the rea-
son why despite similar mode of ligand binding in 1 and 2, products
with different nuclearity have been isolated. When the 5-position of
the pyrazole ring bears a less bulky group like hydrogen, the pheno-
lic pyrazolyl ligand binds to the metal centre through both the O,N-
mode and N,N-bridging mode and subsequent dimerization leads to
the formation of pyrazabole.
[7] C. Pettinari, C. Santini, Comprehensive Coordination Chemistry II, vol. 1,
Elsevier, New York, 2004. p. 159 and references cited.
[8] N. Marques, A. Sella, J. Takats, Chem. Rev. 102 (2002) 2137.
[9] F.T. Edelmann, Angew. Chem. Int. Ed. 40 (2001) 1656.
[10] F. Jäkle, Chem. Rev. 110 (2010) 3985.
[11] S. Trofimenko, Chem. Rev. 72 (1972) 497.
[12] S. Trofimenko, Prog. Inorg. Chem. 34 (1986) 115.
[13] S. Carlo, P. Maura, L. Giancarlogioia, P. Grazia, Mini-Rev. Org. Chem. 7 (2010)
84.
[14] P. Maura, L. Giancarlogioia, P. Grazia, S. Carlo, Mini-Rev. Org. Chem. 7 (2010)
173.
[15] R. Pettinari, C. Pettinari, F. Marchetti, R. Gobetto, C. Nervi, Michele R. Chierotti,
Eric J. Chan, Brian W. Skelton, and Allan H. White, Inorg. Chem. 49 (2010)
11205.
[16] A.J. Hallett, C.J. Adams, K.M. Anderson, R.A. Baber, N.G. Connelly, C.J. Prime,
Dalton Trans. 39 (2010) 5899.
[17] C. Chen, R.F. Jordan, J. Organomet. Chem. 23 (2010) 2543.
[18] G.W. Rabe, F.A. Riederer, M. Zhang-Preße, G.P.A. Yap, Inorg. Chim. Acta 364
(2010) 255.
[19] N. Farfán, H. Höpfl, V. Barba, M.E. Ochoa, R. Santillan, E. Gómez, A. Gutiérrez, J.
Organomet. Chem. 581 (1999) 70.
[20] H. Höpfl, N. Farfán, J. Organomet. Chem. 547 (1997) 71.
[21] V. Barba, E. Gallegoes, R. Santillan, N. Farfán, J. Organomet. Chem. 622 (2001)
259.
[22] V. Barba, R. Luna, D. Castillo, R. Santillan, N. Farfán, J. Organomet. Chem. 604
(2000) 273.
[23] M. Sánchez, T.S. Keizer, S. Parkin, H. Höpfl, D.A. Atwood, J. Organomet. Chem.
654 (2002) 36.
[24] M. Sánchez, H. Höpfl, M.E. Ochoa, N. Farfán, R. Santillan, S. Rojas, Inorg. Chem.
40 (2001) 6405.
[25] G. Vargas-Díaz, H. Höpfl, J. Organomet. Chem. 694 (2009) 3660.
[26] V. Barba, R. Hernández, H. Höpfl, R. Santillan, N. Farfán, J. Organomet. Chem.
694 (2009) 2127.
[27] S. Trofimenko, J. Am. Chem. Soc. 88 (1966) 1842.
[28] S. Trofimenko, J. Am. Chem. Soc. 89 (1967) 3165.
[29] C. Habben, L. Komorowski, W. Maringgele, A. Meller, K. Niedenzu, Inorg. Chem.
28 (1989) 2659.
[30] C.M. Clarke, M.K. Das, E. Hanecker, J.F. Mariategui, K. Niedenzu, P.M. Niedenzu,
H. Nöth, K.R. Warner, Inorg. Chem. 26 (1987) 2310.
[31] L.-Y. Hsu, J.F. Mariategui, K. Niedenzu, S.G. Shore, Inorg. Chem. 26 (1987)
143.
[32] J. Bielawski, M.K. Das, E. Hanecker, K. Niedenzu, H. Nöth, Inorg. Chem. 25
(1986) 4623.
[33] K. Niedenzu, J. Serwatowski, S. Trofimenko, Inorg. Chem. 30 (1991) 524.
[34] E.V. Mutseneck, S. Bieller, M. Bolte, H.W. Lerner, M. Wagner, Inorg. Chem. 49
(2010) 3540.
[35] J. Barberá, R. Gimenéz, J.L. Serrano, Adv. Mater. 6 (1994) 470.
[36] F. Jäkle, T. Priermeier, M. Wagner, Organometallics 15 (1996) 2033.
[37] E. Herdtweck, F. Jäkle, G. Opromolla, M. Spiegler, M. Wagner, P. Zanello,
Organometallics 15 (1996) 5524.
[38] F. Matsumoto, Y. Chujo, Macromolecules 36 (2003) 5516.
[39] Y. Nagata, Y. Chujo, Macromolecules 41 (2008) 3488.
[40] M. Dabrowski, J. Serwatowski, J. Zachara, A. Rufinska, J. Organomet. Chem. 613
(2000) 93.
[41] E. Cavero, R. Giménez, S. Uriel, E. Beltrán, J.S. Serrano, I. Alkorta, J. Elguero,
Cryst. Growth. Des. 8 (2008) 838.
4. Conclusion
To summarize, the reactions of phenylboronic acid with pheno-
lic pyrazoles (H2PhPzR, where R = Ph 1, t-Bu 2, H 3) have been
investigated. Single crystal X-ray analysis shows the formation of
a monometallic organoboron complex, an oxo bridged dimer and
pyrazabole, a B2N4 heterocycle. It is of interest to mention that
by modifying the groups present on the pyrazole ring interesting
organoboron compounds have been isolated in good yield. In par-
ticular, the formation of a rare monometallic organoboron mono-
mer and pyrazabole by this simple and straight forward reaction
methodology is significant considering the recent interest in the
applications of organoboron reagents and pyrazabole.
[42] K. Niedenzu, S. Trofimenko, Top. Curr. Chem. 131 (1986) 1.
[43] K. Niedenzu, H. Nöth, Chem. Ber. 116 (1983) 1132.
[44] W.J. Layton, K. Niedenzu, P.M. Niedenzu, S. Trofimenko, Inorg. Chem. 24 (1985)
1454.
[45] K. Niedenzu, P.M. Niedenzu, Inorg. Chem. 23 (1984) 3713.
[46] S. Tanase, G. Aromi, E. Bouwman, H. Kooijman, A.L. Spek, J. Reedijk, Chem.
Commun. (2005) 3147.
Acknowledgements
V.B. thanks DST for funding under the SERC-Fast track Scheme.
P.V.V.N.K. thanks CSIR for fellowship.
[47] Y.-L. Bai, J. Tao, W. Wernsdorfer, R.-B. Huang, L.-S. Zheng, J. Am. Chem. Soc. 128
(2006) 16428.
[48] M. Viciano-Chumillas, S. Tanase, I. Mutikainen, M. Turpeinen, L.J. de Jongh, J.
Reedijk, Inorg. Chem. 47 (2008) 5919.
Appendix A. Supplementary material
[49] G. Aromi, E. Bouwman, E. Burzuri, C. Carbonera, J. Krzystek, F. Luis, C. Sehlegel,
J.V. Slageren, S. Tanase, S.J. Teat, Chem. Eur. J. 14 (2008) 11158.
[50] Y.-L. Bai, V. Tangoulis, R.-B. Huang, L.-S. Zheng, J. Tao, Chem. Eur. J. 15 (2009)
2377.
[51] M. Viciano-Chumillas, S. Tanase, L.J. de Jongh, J. Reedijk, Eur. J. Inorg. Chem. 1
(2010) 3403. and references cited.
CCDC 798198, 798200 and 798199 contain the supplementary
crystallographic data for 1, 2 and 3, respectively. These data can
be obtained free of charge from The Cambridge Crystallographic
tary data associated with this article can be found, in the online
[52] A.K. Jami, M.S.R. Prabhu, V. Baskar, Organometallics 29 (2010) 1137.
[53] A.W. Addision, P.J.J. Bruke, Heterocycl. Chem. 8 (1981) 803.