Porphyrin has gained recognition as one of the most
versatile building blocks for DSCs due to their unique
optical as well as electrochemical properties and their
excellent photochemical stability.6 Due to the limited
absorption behavior of the porphyrin monomer in the
visible and particularly in the NIR region, efforts have
been made toward the design and synthesis of π-extended
porphyrins, including porphyrin tapes7 and polycyclic
aromatic compounds-fused porphyrins,8 which were pre-
dicted to have potential applications in photovoltaic
devices.8e,h,i Attempts to use these fused dyes in DSCs
were independently made by Yeh and Imahori’s
groups,9,10 and up to 4.1% efficiency was achievable under
optimized conditions. However, DSCs based on fused
porphyrin systems exhibiting a NIR response beyond
900 nm have never been reported. Herein we report two
novel perylene anhydride fused porphyrin dyes 1 and 2
(Figure 1), which have been employed successfully as NIR
sensitizers for DSCs.
Scheme 1
fused porphyrins exhibit intensified NIR absorptions,
large dipole moments, and high photostability as reported
in our recent studies,8h thus providing an extraordinary
molecular platform for applications in DSCs. Neverthe-
less, appropriate structural modifications are necessary for
such a purpose. (2) Anhydride serves as an anchoring
group,11 which can be obtained by saponification of an
imide group in the presence of a strong base. In addition,
the electron-withdrawing anhydride moiety is able to
stabilize the highly conjugated low band gap π-system,8h
leading to stable NIR dyes for practical DSCs application.
(3) In the design of the large-sized, rigid molecules 1 and 2,
bulky 3,5-di-tert-butylphenyl groups were chosen as sub-
stituents because such bulky groups not only surmount the
solubilityproblem but alsoeliminate the aggregation of the
chromophores.8eꢀg (4) Introduction of an electron-donat-
ing 4-(dimethylamino)-phenylethynylene onto the meso-
position of porphyrin in 2 is supposed to result in a more
red-shifted NIR absorption due to the enhanced intramo-
lecular charge transfer, and this is also beneficial to a fast
electron injection from the excited dye to the conduction
band of TiO2 in DSCs.3c
Figure 1. Molecular design and structures of dyes 1 and 2.
As shown in Figure 1, the molecular design is based on
the following considerations: (1) Perylene monoimide-
(6) For selected reviews, see: (a) Imahori, H.; Umeyama, T.; Ito, S.
´ ´
Acc. Chem. Res. 2009, 42, 1809–1818. (b) Martınez-Dıaz, M. V.; de la
Torre, G.; Torres, T. Chem. Commun. 2010, 46, 7090–7108. (c)
Radivojevic, I.; Varotto, A.; Farleya, C.; Drain, C. M. Energy Environ.
Sci. 2011, 3, 1897–1909.
(7) (a) Tsuda, A.; Osuka, A. Science 2001, 293, 79–82. (b) Ikda, T.;
Aratani, N.; Osuka, A. Chem. Asian J. 2009, 4, 1248–1256.
(8) For selected references, see: (a) Gill, H. S.; Marmjanz, M.;
Santamarıa, J.; Finger, I.; Scott, M. J. Angew. Chem., Int. Ed. 2004,
´
43, 485–490. (b) Yamane, O.; Sugiura, K.; Miyasaka, H.; Nakamura, K.;
Fujimoto, T.; Nakamura, K.; Kaneda, T.; Sakata, Y.; Yamashita, M.
Chem. Lett. 2004, 33, 40–41. (c) Kurotobi, K.; Kim, K. S.; Noh, S. B.;
Kim, D.; Osuka, A. Angew. Chem., Int. Ed. 2006, 45, 3944–3947. (d)
Tokuji, S.; Takahashi, Y.; Shinmori, H.; Shinokubo, H.; Osuka, A.
Chem. Commun. 2009, 1028–1030. (e) Davis, N. K. S.; Thompson, A. L.;
Anderson, H. L. Org. Lett. 2010, 12, 2124–2127. (f) Diev, V. V.; Hanson,
K.; Zimmerman, J. D.; Forrest, S. R.; Thompson, M. E. Angew. Chem.,
Int. Ed. 2010, 49, 5523–5526. (g) Jiao, C.; Huang, K.-W.; Guan, Z.; Xu,
Q.-H.; Wu, J. Org. Lett. 2010, 12, 4046–4049. (h) Jiao, C.; Huang, K.-
W.; Chi, C.; Wu, J. J. Org. Chem. 2011, 76, 661–664. (i) Davis, N. K. S.;
Thompson, A. L.; Anderson, H. L. J. Am. Chem. Soc. 2011, 133, 30–31.
(j) Jiao, C.; Zhu, L.; Wu, J. Chem.;Eur. J. 2011, 17, 6610–6614.
(9) Mai, C.-L.; Huang, W.-K.; Lu, H.-P.; Lee, C.-W.; Chiu, C.-L.;
Liang, Y.-R; Diau, E. W.-G.; Yeh, C.-Y. Chem. Commun. 2010, 46, 809–
811.
€
(11) (a) Edvinsson, T.; Li, C.; Pschirer, N.; Schoneboom, J.;
Eickemeyer, F.; Sens, R.; Boschloo, G.; Herrmann, A.; Mullen, K.;
€
Hagfeldt, A. J. Phys. Chem. C 2007, 111, 15137–15140. (b) Li, C.; Yum,
J.-H.; Moon, S.-J.; Herrmann, A.; Eickemeyer, F.; Pschirer, N. G.; Erk,
€
€ €
P.; Schoneboom, J.; Mullen, K.; Gratzel, M.; Nazeeruddin, M. K.
(10) (a) Tanaka, M.; Hayashi, S.; Eu, S.; Umeyama, T.; Matano, Y.;
Imahori, H. Chem. Commun. 2007, 2069–2071. (b) Hayashi, S.; Tanaka,
M.; Hayashi, H.; Eu, S.; Umeyama, T.; Matano, Y.; Araki, Y.; Imahori,
H. J. Phys. Chem. C 2008, 112, 15576–15585.
€
ChemSusChem. 2008, 1, 615–618. (c) Li, C.; Liu, Z.; Schoneboom, J.;
€
Eickemeyer, F.; Pschirer, N. G.; Erk, P.; Herrmann, A.; Mullen, K.
J. Mater. Chem. 2009, 19, 5405–5415.
Org. Lett., Vol. 13, No. 14, 2011
3653