ORGANIC
LETTERS
2011
Vol. 13, No. 15
4148–4150
Core-Extended Perylene
Tetracarboxdiimides: The
Homologous Series of Coronene
Tetracarboxdiimides
€
Christian Lutke Eversloh, Chen Li,* and Klaus Mullen*
€
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
lichen@mpip-mainz.mpg.de; muellen@mpip-mainz.mpg.de
Received June 16, 2011
ABSTRACT
Two novel coronenediimide (CDI) derivatives, CDI 2 and dinaphtho-CDI 4, were synthesized via straightforward synthetic routes completing the
homologous series of coronene tetracarboxdiimides, which show remarkable optical properties with absorption wavelengths ranging from 380 to
600 nm, high absorption coefficients, and high fluorescence quantum yields.
Coronene dyes, both the pure hydrocarbon derivatives
and coronene tetracarboxdiimides (CDIs), have been the
focus of research for many years. Thus various synthetic
routes to coronene and core-expanded analogs are
known,1 but most of them suffer from numerous reaction
steps and low yields.2 Furthermore only a few reactions are
known for the preparation of CDIs,3 which can be re-
garded as bay-extended perylene tetracarboxdiimides
(PDIs),4 and for this reason most syntheses start from
the latter. Particularly the enlargement of the π-system
along the short molecular axis of PDI (1) attracts huge
interest5 and offers access to various biological6 as well as
organic electronic applications7 such as light-emitting
diodes3c and field-effect transistors.8 Herein we present
the straightforward syntheses of two novel chromophores,
(6) (a) Franceschin, M.; Alvino, A.; Casagrande, V.; Mauriello, C.;
Pascucci, E.; Savino, M.; Ortaggi, G.; Bianco, A. Bioorg. Med. Chem.
2007, 15 (4), 1848–1858. (b) Franceschin, M.; Alvino, A.; Ortaggi, G.;
Bianco, A. Tetrahedron Lett. 2004, 45 (49), 9015–9020.
(1) van Dijk, J. T. M.; Hartwijk, A.; Bleeker, A. C.; Lugtenburg, J.;
Cornelisse, J. J. Org. Chem. 1996, 61 (3), 1136–1139.
€
(2) Vogtle, F. Reizvolle Moleku€le der Organischen Chemie; Teubner:
Stuttgart, 1989.
(7) (a) Zhan, X.; Facchetti, A.; Barlow, S.; Marks, T. J.; Ratner,
M. A.; Wasielewski, M. R.; Marder, S. R. Adv. Mater. 2011, 23 (2), 268–
€
(3) (a) Wurthner, F. Chem. Commun. 2004, 14, 1564–1579. (b)
Alibert-Fouet, S.; Seguy, I.; Bobo, J.-F.; Destruel, P.; Bock, H.
€
284. (b) Herrmann, A.; Mullen, K. Chem. Lett. 2006, 35 (9), 978–985. (c)
Chem.;Eur. J. 2007, 13 (6), 1746–1753. (c) Rohr, U.; Schlichting, P.;
€
Samorı, P.; Severin, N.; Simpson, C. D.; Mullen, K.; Rabe, J. P. J. Am.
´
€
€
€
Bohm, A.; Gross, M.; Meerholz, K.; Brauchle, C.; Mullen, K. Angew.
Chem. Soc. 2002, 124 (32), 9454–9457. (d) Pollard, A. J.; Perkins, E. W.;
Smith, N. A.; Saywell, A.; Goretzki, G.; Phillips, A. G.; Argent, S. P.;
Chem., Int. Ed. 1998, 37 (10), 1434–1437.
€
€
€
(4) Avlasevich, Y.; Li, C.; Mullen, K. J. Mater. Chem. 2010, 20 (19),
3814–3826.
Sachdev, H.; Muller, F.; Hufner, S.; Gsell, S.; Fischer, M.; Schreck, M.;
Osterwalder, J.; Greber, T.; Berner, S.; Champness, N. R.; Beton, P. H.
Angew. Chem., Int. Ed. 2010, 49 (10), 1794–1799.
(5) (a) Jiang, W.; Li, Y.; Yue, W.; Zhen, Y.; Qu, J.; Wang, Z. Org.
Lett. 2009, 12 (2), 228–231. (b) Qian, H.; Yue, W.; Zhen, Y.; Di Motta,
S.; Di Donato, E.; Negri, F.; Qu, J.; Xu, W.; Zhu, D.; Wang, Z. J. Org.
Chem. 2009, 74 (16), 6275–6282. (c) Yao, J. H.; Chi, C.; Wu, J.; Loh, K.-
P. Chem.;Eur. J. 2009, 15 (37), 9299–9302.
€
€
(8) (a) Nolde, F.; Pisula, W.; Muller, S.; Kohl, C.; Mullen, K. Chem.
Mater. 2006, 18 (16), 3715–3725. (b) An, Z.; Yu, J.; Domercq, B.; Jones,
S. C.; Barlow, S.; Kippelen, B.; Marder, S. R. J. Mater. Chem. 2009, 19
(37), 6688–6698.
r
10.1021/ol201623f
Published on Web 07/01/2011
2011 American Chemical Society