A.B. Chaplin, P.J. Dyson / Journal of Organometallic Chemistry 696 (2011) 2485e2490
2489
powder. Yield: 0.069 g (11%/ruthenium). Yellow crystals of syn-3
Acknowledgement
suitable for X-ray diffraction were obtained from a CH2Cl2 solution
layered with toluene and pentane at RT. anti-3 could not be
obtained in pure form.
This work was supported by the EPFL and the Swiss National
Science Foundation. We thank the New Zealand Foundation for
Research, Science and Technology for a Top Achiever Doctoral
Fellowship (A. B. C.) and Dr R. Scopelliti and Dr E. Solari for technical
support.
syn-3: 1H NMR (CD2Cl2, 400 MHz): 7.40e7.65 (m, 20H, PPh2C9),
d
3
6.79e7.31 (m, 10H, PPh2C10), 6.51 (d, JHH ¼ 6.1, 2H, H3), 6.05 (t,
3
3JHH ¼ 5.6, 1H, H1), 5.55e5.70 (m, 2H, H2), 4.05 (q, JHH ¼ 7.0, 2H,
2
2
2
H6), 3.22 (dt, JHH ¼ 14.5, JPH ¼ 5, 2H, H9), 2.51 (dt, JHH ¼ 14.5,
0
2JPH ¼ 7, 2H, H9 ), 1.52e1.57 (m, 2H, H10), 1.24 (t, 3JHH ¼ 7.0, 3H, H7),
Appendix. Supplementary information
0.99 (s, 3H, H11). 13C{1H} NMR (CD2Cl2, 100 MHz):
d
161.4 (s, C5),
128e139 (m), 102.8 (t, 2JPC ¼ 3, C3), 96.3 (br, C4), 91.5 (br, C1), 90.4 (t,
Supplementary data related to this article can be found online at
2JPC ¼ 2, C2), 63.0 (s, C6), 43.3e43.7 (m, C10), 38.6 (d, 2JPC ¼ 17, C8),
33.9 (q, 3JPC ¼ 11, C11), 33.2 (td, 1JPC ¼ 19, 3JPC ¼ 7, C9), 13.9 (s, C7). 31
P
{1H} NMR (CDCl3, 162 MHz):
d
25.5 (s, 2P, RuePPh2), ꢀ30.7 (s, 1P,
References
pend-PPh2), ꢀ144.3 (sept, JPF ¼ 711, 1P, PF6). 31P{1H} NMR (d6-
1
DMSO, 162 MHz):
d
26.5 (s, 2P, RuePPh2), ꢀ30.8 (s, 1P, pend-
1
[1] Recent examples include: (a) F.M.A. Geilen, B. Engendahl, A. Harwardt,
W. Marquardt, J. Klankermayer, W. Leitner, Angew. Chem. Int. Ed. 49 (2010)
5510;
PPh2), ꢀ144.1 (sept, JPF ¼ 713, 1P, PF6). ESI-MS (CH2Cl2, 60 ꢁC,
5.0 kV) positive ion: m/z, 911 [M]þ; negative ion: m/z, 145 [PF6]ꢀ.
Anal. Calcd for C50H49ClF6O2P4Ru (1056.35 gmolꢀ1): C, 56.85; H,
4.68. Found: C, 56.93; H, 4.72. anti-3: 31P{1H} NMR (CDCl3,162 MHz,
(b) M.F. Cain, R.P. Hughes, D.S. Glueck, J.A. Golen, C.E. Moore, A.L. Rheingold,
Inorg. Chem. 49 (2010) 7650;
(c) J.M. Walker, A.M. Cox, R. Wang, G.J. Spivak, Organometallics 29 (2010)
6121.
complex only):
d
24.6 (s, 2P, RuePPh2), ꢀ28.1 (s, 1P, pend-PPh2).
3.4. Preparation of [RuCl(DMSO)2(
3-triphos)]BF4 (4.BF4)
This complex is prepared quantitatively by dissolving [RuCl(k3
[2] (a) J.-C. Hierso, R. Amardeil, E. Bentabet, R. Boussier, B. Gautheron, P. Meunier,
P. Kalck, Coord. Chem. Rev. 236 (2004) 143;
(b) H.A. Mayer, W.C. Kaska, Chem. Rev. 94 (1994) 1239;
(c) F.A. Cotton, B. Hong, Prog. Inorg. Chem. 40 (1992) 179.
[3] (a) A.A.N. Magro, G.R. Eastham, D.J. Cole-Hamilton, Chem. Commun. (2007)
3154;
k
-
triphos)]2(BF4)2 in d6-DMSO and was characterised in situ by NMR
(b) P. Barbaro, C. Bianchini, A. Meli, M. Moreno, F. Vizza, Organometallics 21
(2002) 1430;
(c) J.-X. Chen, J.F. Daeuble, D.M. Brestensky, J.M. Stryker, Tetrahedron 56
(2000) 2153;
(d) H.T. Teunissen, C.J. Elsevier, Chem. Commun. (1998) 1367;
(e) C. Bianchini, A. Meli, Acc. Chem. Res. 31 (1998) 109;
(f) V. Sernau, G. Huttner, M. Friz, L. Zsolnai, O. Walter, J. Organomet. Chem. 453
(1993) C23;
(g) P. Barbaro, C. Bianchini, P. Frediani, A. Meli, F. Vizza, Inorg. Chem. 31 (1992)
1523;
spectroscopy. 4.BF4 is unstable in the absence of DMSO.
1H NMR (d6-DMSO, 400 MHz, N2, 293 K):
d 7.53e6.99 (m, 30H),
2.33 (br, 6H, CH2), 1.48 (br, 3H, CH3). OSMe2 were not unambigu-
ously located. 31P{1H} NMR (d6-DMSO, 162 MHz, N2, 293 K):
d 35.1
(br (fwhm w 23 Hz), 3P).
For low temperature characterisation: A screw cap NMR tube was
charged with [RuCl(
k
3-triphos)]2(BF4)2 (7 mg) and placed under
(h) C. Bianchini, A. Meli, M. Peruzzini, F. Vizza, P. Frediani, P. Frediani,
J.A. Ramirez, Organometallics 9 (1990) 226.
a nitrogen atmosphere. Dry DMSO (0.05 ml) followed by CD2Cl2
(0.45 ml) were then added and the tube sealed. Yield: 93% of 4.BF4
by 31P{1H} NMR spectroscopy. Consistent with the structural
assignment, cooling to 183 K resolves the broad 31P resonance
observed at RT into resonances at 40.4 and 20.0 ppm in a 2:1 ratio
(see Supporting information).
[4] For example: (a) M. Kandiah, G.S. McGrady, A. Decken, P. Sirsch, Inorg. Chem.
44 (2005) 8650;
(b) P.K. Baker, M. Al-Jahdali, M.M. Meehan, J. Organomet. Chem. 648 (2002)
99;
(c) D.H. Gibson, H. He, M.S. Mashuta, Organometallics 20 (2001) 1456;
(d) M.A. Rida, C. Copéret, A.K. Smith, J. Organomet. Chem. 628 (2001) 1;
(e) A.M. Bond, R. Colton, A. van der Bergen, J.N. Walter, Inorg. Chem. 39 (2000)
4696 (and references therein);
(f) G. Reinhard, R. Soltek, G. Huttner, A. Barth, O. Walter, L. Zsolnai, Chem. Ber.
129 (1996) 97;
(g) S.G. Davis, S.J. Simpson, H. Felkin, F. Tadj, O. Watts, J. Chem. Soc. Dalton
Trans. (1983) 981.
1H NMR (CD2Cl2 þ 10% v/v DMSO, 400 MHz, N2, 293 K):
d
7.03e7.45 (m, 30H), 2.30e2.36 (m, 6H, CH2), 1.49e1.55 (m, 3H,
CH3). OSMe2 were not unambiguously located. 13C{1H} NMR
127e136 (m),
(CD2Cl2 þ 10% v/v DMSO, 100 MHz, N2, 293 K):
d
3
37.7e37.9 (m, C(CH2)), 37.1 (q, JPC ¼ 11, CH3), 33.2e33.8 (m, CH2).
[5] (a) C. Landgrafe, W.S. Sheldrick, M. Südfed, Eur. J. Inorg. Chem. (1998) 407;
(b) D.J. Rauscher, E.G. Thaler, J.C. Huffman, K.G. Caulton, Organometallics 10
(1991) 2209;
OSMe2 were not unambiguously located. 31P{1H} NMR
(CD2Cl2 þ 10% v/v DMSO, 162 MHz, 293 K, N2):
d
37.5 (br, 3P). 31P
{1H} NMR (CD2Cl2 þ 10% v/v DMSO, 162 MHz, 183 K, N2):
d 40.4 (d,
(c) J. Ott, L.M. Venanzi, C.A. Ghilardi, S. Midollini, A. Orlandini, J. Organomet.
Chem. 291 (1985) 89;
2
2JPP ¼ 46, 2P, RuePPh2), 20.0 (t, JPP ¼ 46, 1P, RuePPh2).
(d) W.O. Siegl, S. Lapporte, J.P. Collman, Inorg. Chem. 12 (1973) 674;
(e) W.O. Siegl, S. Lapporte, J.P. Collman, Inorg. Chem. 10 (1971) 2158.
[6] G. Kiss, I. Hováth, Organometallics 10 (1991) 3798.
[7] A.B. Chaplin, P.J. Dyson, Eur. J. Inorg. Chem. 47 (2008) 381.
[8] (a) J. Hannedouche, G.J. Clarkson, M. Wills, J. Am. Chem. Soc. 126 (2004) 986;
(b) R. Noyori, M. Yamakawa, S. Hashiguchi, J. Org. Chem. 66 (2001) 7931;
(c) K.-J. Haack, S. Hashiguchi, A. Fujii, T. Ikariya, R. Noyori, Angew. Chem. Int.
Ed. 36 (1997) 285;
(d) R. Noyori, S. Hashiguchi, Acc. Chem. Res. 30 (1997) 97.
[9] W. Ren, J. Liu, L. Chen, X. Wan, Adv. Synth. Catal. 352 (2010) 1424.
[10] R. Martinez, M.-O. Simon, R. Chevalier, C. Pautigny, J.-P. Genet, S. Darses, J. Am.
Chem. Soc. 131 (2009) 7887.
3.5. Catalytic studies
All catalytic experiments were conducted using a home-built
multi-cell autoclave containing an internal temperature probe.
Each glass reaction vessel was charged with the pre-catalyst,
substrate, internal standard (100 mg octane) and solvent and
then placed inside the autoclave and sealed. This procedure was
carried out in air. Following flushing with H2 (3 ꢄ 10 bar), the
autoclave was heated to the desired temperature under H2 (10 bar)
and then maintained at the desired pressure for the duration of the
catalytic run. The autoclave was then cooled to ambient tempera-
ture (typically ꢅ5 min when run at 50 ꢁC, ꢅ10 min when run at
90 ꢁC) using an external water-cooling jacket and the pressure
released. Conversions were determined by GC analysis of the
samples using a Varian chrompack CP-3380 gas chromatograph,
with species verified by comparison to authentic samples.
[11] (a) L.R. Jimenez, B.J. Gallon, Y. Schrodi, Organometallics 29 (2010) 3471;
(b) R. Castarlenas, P.H. Dixneuf, Angew. Chem. Int. Ed. 42 (2003) 4524;
(c) M. Bassetti, F. Centola, D. Sémeril, C. Bruneau, P.H. Dixneuf, Organome-
tallics 22 (2003) 4459;
(d) A. Fürstner, M. Liebl, C.W. Lehmann, M. Picquet, R. Kunz, C. Bruneau,
D. Touchard, P.H. Dixneuf, Chem. Eur. J. 6 (2000) 1847;
(e) M. Picquet, C. Bruneau, P.H. Dixneuf, Chem. Commun. (1998) 2249;
(f) A. Fürstner, M. Picquet, C. Bruneau, P.H. Dixneuf, Chem. Commun. (1998)
1315.
[12] D. Carmona, M.P. Lamata, F. Viguri, R. Rodríguez, F.J. Lahoz, I.T. Dobrinovitch,
L.A. Oro, Dalton Trans. (2008) 3328.