of Energy. This work was supported by National Institutes of
Health, Division of National Center for Research Resources,
under Grant Number G12RR013459 (MAH). This material is
based upon work supported by the National Science Foundation
under CHE-0821357 (500 MHz NMR). The authors thank the
National Science Foundation (CHE-0130835) and the University
of Oklahoma for funds to acquire the diffractometer used in
this work. National Science Foundation is acknowledged for a
CAREER award (CHE-1056927) to MAH.
Notes and references
˚
‡ Crystal data for L: C30H30N10O3, M = 578.64, tricl◦inic, a = 8.7312(11) A,
Fig. 5 2D NOESY NMR experiments of L in absence (A) and presence
(B) of hydrogen sulfate (5 equiv.) in DMSO-d6.
◦
˚
˚
b = 12.8400(17) A, c = 13.6820(18) A, a = 91.989(3) , b = 107.888(2) , g =
◦
3
¯
˚
100.753(2) , V = 1427.1(3) A , T = 100(2)K, space group P 1, Z = 2, 16034
reflections measured, 7004 independent reflections (Rint = 0.0320). The final
R1 values were 0.0495 (I > 2s(I)). The final wR(F2) values were 0.1166 (I >
2s(I)). CCDC 814969. Crystal data for HL+·HSO4-: C30H31N10O3·HO4S,
˚
˚
˚
M = 676.72, monoclinic, a = 12.696(2) A, b = 12.411(2) A, c = 20.491(4) A,
◦
3
˚
b = 103.912(9) , V = 3134.1(9) A , T = 100(2)K, space group P21/n, Z = 4,
29878 reflections measured, 7849 independent reflections (Rint = 0.0716).
The final R1 value was 0.0587 (I > 2s(I)). The final wR(F2) value was
0.1188 (I > 2s(I)). CCDC 795639.
1 (a) M. M. G. Antonisse and D. N. Reinhoudt, Chem. Commun., 1998,
443–448; (b) J. L. Atwood, K. T. Holman and J. W. Steed, Chem.
Commun., 1996, 1401–1407; (c) P. A. Gale, Coord. Chem. Rev., 2003,
240, 191–221; (d) D. P. Cormode, S. S. Murray, A. R. Cowley and P. D.
Beer, Dalton Trans., 2006, 5135–5140.
2 J. W. Pflugrath and F. A. Quiocho, Nature, 1985, 314, 257–260.
3 B. A. Moyer, L. H. Delmau, C. J. Fowler, A. Ruas, D. A. Bostick, J. L.
Sessler, E. Katayev, G. D. Pantos, J. M. Llinares, M. A. Hossain, S. O.
Kang and K. Bowman-James, Adv. Inorg. Chem., 2007, 59, 175–204.
4 (a) S. O. Kang, M. A. Hossain, D. Powell and K. Bowman-James,
Chem. Commun., 2005, 328–330; (b) G. Mani, T. Guchhait, R. Kumar
and S. Kumar, Org. Lett., 2010, 12, 3910–3913; (c) J. S. Mendy, M.
Pilate, T. Horne, V. W. Day and M. A Hossain, Chem. Commun., 2010,
46, 6084–6086; (d) M. A. Saeed, F. R. Fronczek, D. R. Powell and M. A.
Hossain, Tetrahedron Lett., 2010, 51, 4233–4236.
Fig. 6 Proposed binding mode of L for hydrogen sulfate in solution.
2-
that the host forms a strong 1 : 1 complex with SO4 giving the
binding constant of log K = 4.7 which is comparable to that
observed for a pentafluorophenyl-substituted tripodal urea (K =
4.72)6h or nitrophenyl-substituted tripodal urea log K = 4.97).6c
2-
-
Clearly, an additional charge on SO4 compared to HSO4 plays
a role for stronger electrostatic interactions, resulting in a stronger
-
binding of SO42-. The ligand also binds H2PO4 strongly with the
binding constant of log K = 4.2. On the other hand, the addition
of ClO4- and NO3- did not result in any appreciable change in the
NMR resonances (see ESI). Therefore, the binding largely depends
on the relative basicity of the anions included in this study and is
in accordance with the Hofmeister series.17
5 (a) M. A. Hossain, J. M. Llinares, D. Powell and K. Bowman-
James, Inorg. Chem., 2001, 40, 2936–2937; (b) S. O. Kang, V. W.
Day and K. Bowman-James, Org. Lett., 2009, 11, 3654–3657; (c) P. S.
Lakshminarayanan, E. Suresh and P. Ghosh, Inorg. Chem., 2006, 45,
4373–4380.
6 (a) B. Wu, X.-J. Yang, C. Janiak and P. Gerhard Lassahn, Chem.
Commun., 2003, 902–903; (b) B. Wu, X. Huang, Y. Xia, X.-J. Yang
and C. Janiak, CrystEngComm, 2007, 9, 676–685; (c) D. A. Jose, D. K.
Kumar, B. Ganguly and A. Das, Inorg. Chem., 2007, 46, 5817–5819;
(d) F. Zhuge, B. Wu, J. Liang, J. Yang, Y. Liu, C. Jia, C. Janiak,
N. Tang and X. Yang, Inorg. Chem., 2009, 48, 10249–10256; (e) R.
Custelcean, V. Sellin and B. A. Moyer, Chem. Commun., 2007, 1541–
1543; (f) R. Custelcean, J. Bosano, P. V. Bonnesen, V. Kertesz and B. P.
Hay, Angew. Chem., Int. Ed., 2009, 48, 4025–4029; (g) I. Ravikumar
and P. Ghosh, Chem. Commun., 2010, 46, 1082–1084; (h) I. Ravikumar,
P. S. Lakshminarayanan, M. Arunachalam, E. Suresh and P. Ghosh,
Dalton Trans., 2009, 4160–4168.
In summary, we have presented a seven coordinate complex of
hydrogen sulfate formed by three tren-based receptors in solid
state. The anion is coordinated with six NH ◊ ◊ ◊ O bonds and one
OH ◊ ◊ ◊ O hydrogen bond. In contrast, the ligand was found to
encapsulate a single anion within its cavity in solution, suggesting
an obvious discrepancy of binding mode from that observed
in solid state. While many examples exist for seven-coordinate
complexes with metal ions,18 to the best of our knowledge, there is
just one structure of seven-coordinate anion complex reported by
Bowman-James and coworkers, where one sulfate is encapsulated
by an amide-based cryptand with four hydrogen-bonds to the
cryptand and three additional hydrogen-bonds to the crystalline
water molecules.19 The seven coordinate complex in our case has
been resulted from the packing influence of the crystal, which
represents a rare example of a heptacoordinated anion with a
synthetic receptor.
7 (a) J. Kim, H. Juwarker, X. Liu, M. S. Lah and K. S. Jeong, Chem.
Commun., 2010, 46, 764–766; (b) P. A. Gale, J. R. Hiscock, C. Z. Jie,
M. B. Hursthouse and M. E. Light, Chem. Sci., 2010, 1, 215–220.
8 (a) R. Custelcean, B. A. Moyer and B. P. Hay, Chem. Commun., 2005,
5971–5973; (b) B. Wu, J. Liang, J. Yang, C. Jia, X.-J. Yang, H. Zhang,
N Tangb and C. Janiak, Chem. Commun., 2008, 1762–1764.
9 B. Schulze, C. Friebe, M. D. Hager, W. Gu¨nther, U. Ko¨hn, B. O. Jahn,
H. Go¨rls and U. S. Schubert, Org. Lett., 2010, 12, 2710–2713.
10 K. Bowman-James, Acc. Chem. Res., 2005, 38, 671–678.
11 B. P. Hay, T. K. Firman and B. A. Moyer, J. Am. Chem. Soc., 2005,
127, 1810–1811.
BT, TH and KT were supported by DOE under the Faculty
and Student Teams (FaST) Program at ORNL hosted by Dr.
Bruce A. Moyer. Participation of PVB and MAH was spon-
sored by the Division of Chemical Sciences, Geosciences, and
Biosciences, Office of Basic Energy Sciences, U.S. Department
12 S. O. Kang, V. W. Day and K. Bowman-James, Org. Lett., 2009, 11,
3654–3657.
13 B. Pirard, G. Baudoux and F. Durant, Acta Crystallogr., Sect. B: Struct.
Sci., 1995, B51, 103–107.
4446 | Org. Biomol. Chem., 2011, 9, 4444–4447
This journal is
The Royal Society of Chemistry 2011
©