8
Tetrahedron
development of zileuton: An orally active 5-lipoxygenase inhibitor.
equivalent. The Journal of Organic Chemistry 2015, 80, 2545-
2553.
ACCEPTED MANUSCRIPT
International Journal of Immunopharmacology 1992, 14, 505-
510.
29. Kuik, D.; McCubbin, J.A.; Tranmer, G.K. Sonication and
11. Rotella, D.P. The discovery and development of boceprevir.
Expert Opinion on Drug Discovery 2013, 8, 1439-1447.
12. Adnane, L.; Trail, P.A.; Taylor, I.; Wilhelm, S.M. Sorafenib (bay
microwave-assisted
aryltrifluoroborates and phenylboronic acids under metal-free
conditions. Synthesis 2017, 49, 2555-2561.
primary
amination
of
potassium-
30. Dallinger, D.; Kappe, C.O. Microwave-assisted synthesis in water
as solvent. Chemical Reviews 2007, 107, 2563-2591.
31. Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave
assisted organic synthesis—a review. Tetrahedron 2001, 57, 9225-
9283.
32. Kulkarni, A.R.; Garai, S.; Thakur, G.A. Scalable, one-pot,
microwave-accelerated tandem synthesis of unsymmetrical urea
derivatives. The Journal of Organic Chemistry 2017, 82, 992-999.
33. Sureshbabu, V.V.; Lalithamba, H.S.; Narendra, N.; Hemantha,
H.P. New and simple synthesis of acid azides, ureas and
carbamates from carboxylic acids: Application of peptide coupling
agents edc and hbtu. Organic & Biomolecular Chemistry 2010, 8,
835-840.
34. Lebel, H.; Leogane, O. Curtius rearrangement of aromatic
carboxylic acids to access protected anilines and aromatic ureas.
Organic Letters 2006, 8, 5717-5720.
35. Singh, A.S.; Kumar, D.; Mishra, N.; Tiwari, V.K. An efficient
one-pot synthesis of n,n[prime or minute]-disubstituted ureas and
carbamates from n-acylbenzotriazoles. RSC Advances 2016, 6,
84512-84522.
43‐9006, nexavar®),
a
dual‐action inhibitor that targets
raf/mek/erk pathway in tumor cells and tyrosine kinases
vegfr/pdgfr in tumor vasculature. In Methods in enzymology,
Academic Press: 2006; Vol. 407, pp 597-612.
13. Røed Skårderud, M.; Polk, A.; Kjeldgaard Vistisen, K.; Larsen,
F.O.; Nielsen, D.L. Efficacy and safety of regorafenib in the
treatment of metastatic colorectal cancer: A systematic review.
Cancer Treatment Reviews 2018, 62, 61-73.
14. Dumas, J.; Smith, R.A.; Lowinger, T.B. Recent developments in
the discovery of protein kinase inhibitors from the urea class.
Current opinion in drug discovery & development 2004, 7, 600-
616.
15. Yin, Y.; Lin, L.; Ruiz, C.; Khan, S.; Cameron, M.D.; Grant, W.;
Pocas, J.; Eid, N.; Park, H.; Schröter, T., et al. Synthesis and
biological evaluation of urea derivatives as highly potent and
selective rho kinase inhibitors. Journal of Medicinal Chemistry
2013, 56, 3568-3581.
16. Chayah, M.; Camacho, M.E.; Carrion, M.D.; Gallo, M.A.;
Romero, M.; Duarte, J. N,n[prime or minute]-disubstituted
thiourea and urea derivatives: Design, synthesis, docking studies
and biological evaluation against nitric oxide synthase.
MedChemComm 2016, 7, 667-678.
36. Thalluri, K.; Manne, S.R.; Dev, D.; Mandal, B. Ethyl 2-cyano-2-
(4-nitrophenylsulfonyloxyimino)acetate-mediated
lossen
rearrangement: Single-pot racemization-free synthesis of
hydroxamic acids and ureas from carboxylic acids. The Journal of
Organic Chemistry 2014, 79, 3765-3775.
17. Li, Q.-S.; Lv, P.-C.; Li, H.-Q.; Lu, X.; Li, Z.-L.; Ruan, B.-F.; Zhu,
H.-L. Synthesis and biological evaluation of novel n, n′-
disubstituted urea and thiourea derivatives as potential anti-
melanoma agents. Journal of Enzyme Inhibition and Medicinal
Chemistry 2012, 27, 708-714.
18. Brunner, K.; Steiner, E.M.; Reshma, R.S.; Sriram, D.; Schnell, R.;
Schneider, G. Profiling of in vitro activities of urea-based
inhibitors against cysteine synthases from mycobacterium
tuberculosis. Bioorganic & Medicinal Chemistry Letters 2017, 27,
4582-4587.
37. Vasantha, B.; Hemantha, H.P.; Sureshbabu, V.V. 1-
propanephosphonic acid cyclic anhydride (t3p) as an efficient
promoter for the lossen rearrangement: Application to the
synthesis of urea and carbamate derivatives. Synthesis 2010, 2010,
2990-2996.
38. AbdelHafez, E.-S.M.N.; Aly, O.M.; Abuo-Rahma, G.E.-D.A.A.;
King, S.B. Lossen rearrangements under heck reaction conditions.
Advanced Synthesis & Catalysis 2014, 356, 3456-3464.
39. Adler, T.; Bonjoch, J.; Clayden, J.; Font-Bardia, M.; Pickworth,
M.; Solans, X.; Sole, D.; Vallverdu, L. Slow interconversion of
enantiomeric conformers or atropisomers of anilide and urea
derivatives of 2-substituted anilines. Organic & Biomolecular
Chemistry 2005, 3, 3173-3183.
19. Balci, M. Acyl azides: Versatile compounds in the synthesis of
various heterocycles-. Synthesis.
20. a) Rojas, C. Curtius rearrangement. Name Reaction for
Homologations, 2009. Pt. 2, 136-163. b) Ishikawa, H.; Bondzic,
B.P.; Hayaski, Y. Synthesis of (-)-Oseltamivir by using
a
microreactor in the Curtius Rearrangement. European Journal of
Organic Chemistry 2011, 30, 6020-6031.
40. Kotecki, B.J.; Fernando, D.P.; Haight, A.R.; Lukin, K.A. A
general method for the synthesis of unsymmetrically substituted
ureas via palladium-catalyzed amidation. Organic Letters 2009,
11, 947-950.
21. Aubé, J.; Fehl, C.; Liu, R.; McLeod, M.C.; Motiwala, H.F.
Hofmann, Curtius, Schmidt, Lossen, and related reactions.
Comprehensive Organic Synthesis II, 2014. Vol. 6, 598-635.
22. a) Marsini, M.A.; Buono, F.G.; Lorenz, J.C.; Ynag, B.-S.; Reeves,
J.T.; Sidhu, K.; Sarvestani, M.; Tan, Z.; Zhang, Y.; Li, N.; Lee,
H.; Brazzillo, J.; Nummy, L.J.; Chung, J.C.; Luvaga, I.K.;
Narayanan, B.A.; Wei, X.; Song, J.J.; Roschangar, F.; Yee, N. K.;
Senanayake, C.H. Development of a concise, scalable synthesis of
41. Hosseinzadeh,
R.;
Sarrafi,
Y.;
Mohadjerani,
M.;
Mohammadpourmir, F. Copper-catalyzed arylation of phenylurea
using kf/al2o3. Tetrahedron Letters 2008, 49, 840-843.
42. Lee, H.-G.; Kim, M.-J.; Park, S.-E.; Kim, J.-J.; Ram Kim, B.; Lee,
S.-G.; Yoon, Y.-J. Phenyl 4,5-dichloro-6-oxopyridazine-
1(6h)carboxylate as carbonyl source: Facile and selective
synthesis of carbamates and ureas under mild conditions. 2009;
Vol. 2009, p 2809-2814.
43. Khan, K.M.; Saeed, S.; Ali, M.; Gohar, M.; Zahid, J.; Khan, A.;
Perveen, S.; Choudhary, M.I. Unsymmetrically disubstituted urea
derivatives: A potent class of antiglycating agents. Bioorganic &
Medicinal Chemistry 2009, 17, 2447-2451.
44. Hwu, J.R.; King, K.Y. Design, synthesis, and photodegradation of
silicon-containing polyureas. Chemistry – A European Journal
2005, 11, 3805-3815.
45. Peterson, S.L.; Stucka, S.M.; Dinsmore, C.J. Parallel synthesis of
ureas and carbamates from amines and co2 under mild conditions.
Organic Letters 2010, 12, 1340-1343.
a
CCR1 antagonist utilizing a continuous flow Curtius
rearrangement. Green Chemistry, 2017, 19, 1454-1461. b)
Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N.; Smith,
C.D.; Tierney, J.P. A modular flow reactor for performing Curtius
rearrangements as
a continuous flow process. Organic &
Biomolecular Chemistry 2008, 6, 1577-1586. c) Sahoo, H.R.;
Kralj, J.G.; Jensen, K.F. Angewandte Chemie, 2007, 46, 5704-
5708.
23. Zhao, J.; Li, Z.; Yan, S.; Xu, S.; Wang, M.-A.; Fu, B.; Zhang, Z.
Pd/c catalyzed carbonylation of azides in the presence of amines.
Organic Letters 2016, 18, 1736-1739.
24. Gillaizeau, I.; Gigant, N. Alkyl and acyl azide rearrangements. In
Molecular rearrangements in organic synthesis, John Wiley &
Sons, Inc: 2015; pp 85-110.
46. Hatano, M.; Kamiya, S.; Moriyama, K.; Ishihara, K.
Lanthanum(iii)
isopropoxide
catalyzed
chemoselective
25. Jašíková, L.; Hanikýřová, E.; Škríba, A.; Jašík, J.; Roithová, J.
Metal-assisted lossen rearrangement. The Journal of Organic
Chemistry 2012, 77, 2829-2836.
transesterification of dimethyl carbonate and methyl carbamates.
Organic Letters 2011, 13, 430-433.
47. Shivarkar, A.B.; Gupte, S.P.; Chaudhari, R.V. Carbamate
synthesis via transfunctionalization of substituted ureas and
carbonates. Journal of Molecular Catalysis A: Chemical 2004,
223, 85-92.
26. Dubé, P.; Nathel, N.F.F.; Vetelino, M.; Couturier, M.; Aboussafy,
C.L.; Pichette, S.; Jorgensen, M.L.; Hardink, M.
Carbonyldiimidazole-mediated lossen rearrangement. Organic
Letters 2009, 11, 5622-5625.
27. Yadav, A.K.; Srivastava, V.P.; Yadav, L.D.S. An easy access to
unsymmetrical ureas: A photocatalytic approach to the lossen
rearrangement. RSC Advances 2014, 4, 24498-24503.
28. Voth, S.; Hollett, J.W.; McCubbin, J.A. Transition-metal-free
access to primary anilines from boronic acids and a common +nh2
48. Kianmehr, E.; Baghersad, M.H. Copper-catalyzed coupling of
arylboronic acids with potassium cyanate: A new approach to the
synthesis of aryl carbamates. Advanced Synthesis & Catalysis
2011, 353, 2599-2603.