+
A Highly Efficient and Selective Turn-on Fluorescent Sensor for Cu2 Ion
most tested background metal ions showed small or no
+
interference with the detection of Cu2 , indicat+ing that
compound 1 could be used as an efficient Cu2 -selec-
tive turn-on fluorescent chemosensor, and subsequently
found practical applications in chemical and biological
systems.
References
1
(a) Solomon, E. I.; Szilagyi, R. K.; George, S. D.; Basumal-
lick, L. Chem. Rev. 2004, 104, 419.
(b) Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G.
Chem. Rev. 2006, 106, 1995.
Figure 3 Job plot of 1 vs. Cu(ClO4)2.
2
(a) Varnes, A. W.; Dodson, R. B.; Wehry, E. L. J. Am.
Chem. Soc. 1972, 94, 946.
(b) Kemlo, J. A.; Shepherd, T. M. Chem. Phys. Lett. 1977,
47, 158.
+
Cu2 ion in the presence of different background metal
+
ions (100+equiv.). As shown in Figure 4, except for Hg2
and Co2 ions, other tested background metal ions
showed small or no interference with the detection of
3
Some recent examples, see:
+
Cu2 ion, indicating that 1 could be used as a potential
(a) Fernandez, Y. D.; Gramatges, A. P.; Amendola, V.; Foti,
F.; Mangano, C.; Pallavicini, P.; Patroni, S. Chem. Commun.
2004, 1650.
+
practical Cu2 -selective turn-on fluorescent sensor.
(b) Liu, J. M.; Zheng, Q. Y.; Yang, J. L.; Chen, C. F.;
Huang, Z. T. Tetrahedron Lett. 2002, 43, 9209.
(c) Liu, J. M.; Zheng, Q. Y.; Chen, C. F.; Huang, Z. T. J.
Inclusion Phenom. 2005, 51, 165.
(d) Park, S. M.; Kim, M. H.; Choe, J. I.; No, K. T.; Chang, S.
K. J. Org. Chem. 2007, 72, 3550.
(e) Xie, J.; Ménand, M.; Maisonneuve, S.; Métivier, R. J.
Org. Chem. 2007, 72, 5980.
(f) Vadakkancheril, S. J.; Anu, J. T.; Danaboyina, R. J. Org.
Chem. 2009, 74, 6667.
(g) Zhao, Y.; Zhang, X. B.; Han, Z. X.; Qiao, L.; Li, C. Y.;
Jian, L. X.; Shen, G. L.; Yu, R. Q. Anal. Chem. 2009, 81,
7022.
Some recent examples, see:
(a) Royzen, M.; Dai, Z.; Canary, J. W. J. Am. Chem. Soc.
2005, 127, 1612.
(b) Zhang, X.; Shiraishi, Y.; Hirai, T. Org. Lett. 2007, 9,
5039.
(c) Jung, H. S.; Park, M.; Han, D. Y.; Kim, E.; Lee, C.; Ham,
S.; Kim, J. S. Org. Lett. 2009, 11, 3378.
(d) Lu, H.; Xue, Z. L.; Mack, J.; Shen, Z.; You, X. Z.;
Kobayashi, N. Chem. Commun. 2010, 3565.
Li, G. K.; Xu, Z. X.; Chen, C. F.; Huang, Z. T. Chem.
Commun. 2008, 1774.
He, H. R.; Mortellaro, M. A.; Leiner, M. J. P.; Fraatz, R. J.;
Tusa, J. K. J. Am. Chem. Soc. 2003, 125, 1468.
-5
-1
Figure 4 Fluorescent in+tensity of 1 (10 mol•L ) upon the
addition of 30 equiv. Cu2 in the presence of 100 equiv. back-
ground metal ions in CH3CN. λex=315 nm.
4
Conclusion
In conclusion, we have developed a new easily
available turn-on fluorescent chemosensor 1 based on
an open-chain azacrown bearing a quinoline subunit,
which showed a remarkable enhanced fluore+scent inten-
sity (about 1000-fold) in the+presence of Cu2 ion and a
high selectivity toward Cu2 ion over a wide range of
metal io+ns in acetonitrile. Moreover, the detection limit
5
6
-6
-1
for Cu2 was found to be 2.06× 10 mol•L , and
(E1006122 Ding, W.; Lu, Y.)
Chin. J. Chem. 2010, 28, 1777— 1779
© 2010 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1779