blockbuster drugs Celecoxib (antiarthritis), Viagra, and
Thiomethisosildenafil (phosphodiesterase inhibitors). Ap-
plications of other pyrazole containing compounds as
biological agents7 and as ligands in coordination
chemistry8 are well-documented in the literature. For
instance, Withasomnine, a pyrazole alkaloid, present in a
medicinal plant, Withania somnifera, found in India and
South Africa, exhibits analgesic and CNS depressant
properties.9 In spite of the above-mentioned significance
of sulfone and pyrazole moieties, compounds containing a
sulfonyl group directly attached to pyrazole received only
limited attention.10
enable us to easily introduce a sulfonyl group to the pyrazole
ring. Although R-diazo-β-ketosulfones have been employed
in intramolecular cyclopropanation15 and carbene
insertion16 reactions, surprisingly, their application as dia-
zoalkane equivalents in cycloadditions for the synthesis of
pyrazoles or pyrazolines remains unreported hitherto.
Table 1. Base Screening
Recently, we reported a facile and regioselective synthesis
of phosphonylpyrazoles via an alkoxide-mediated reaction
of R-diazo-β-ketophosphonate, BestmannÀOhira reagent
(BOR),11 with nitroalkenes and enones.12 One-pot three
component versions of our methodology13 and extension of
our methodology for the synthesis of pyrazole esters14 were
reported by others. We envisaged that R-diazo-β-ketosul-
fone would be an efficient S analog of BOR that would
entry
basea
solvent
% yieldb
1
2
3
4
5
6
À
EtOH
EtOH
EtOH
MeOH
MeOH
t-BuOH
no reaction
(7) Reviews: (a) Elguero, J. In Comprehensive Heterocyclic Chemis-
try; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: Oxford,
1996; Vol. 3, p 1. (b) Orth, R. E. J. Pharm. Sci. 1968, 57, 537. (c) Fustero,
S.; Sanz-Cervera, J. F.; Simon-Fuentes, A.; Roman, R.; Catalan, S.;
Murguia, M. ACS Symp. Ser. 2009, 1003, 182. (d) Dolzhenko, A. V.;
Dolzhenko, A. V.; Chui, W. K. Heterocycles 2008, 75, 1575. (e)
Elgemeie, G. H.; Zaghary, W. A.; Amin, K. M.; Nasr, T. M. Nucleosides,
Nucleotides Nucleic Acids 2005, 24, 1227. (f) Lamberth, C. Heterocycles
2007, 71, 1467. (g) McDonald, E.; Jones, K.; Brough, P. A.; Drysdale,
M. J.; Workman, P. Curr. Top. Med. Chem. 2006, 6, 1193. For a recent
article: (h) Lee, K. Y.; Kim, J. M.; Kim, J. N. Tetrahedron Lett. 2003, 44,
6737 and the references cited therein.
NaOEt
KOH
61
70
KOH
62
NaOMe
NaO-t-Bu
85
intractable
mixture
a 1.25 equiv. b Isolated yield after silica gel column chromatography.
The reaction conditions were optimized by treating p-
methoxynitrostyrene 1a with sulfone 2a in the absence of
any base and also in the presence of different bases and
alcohols at room temperature (Table 1). No reaction in the
absence of base (entry 1, Table 1) and formation of a
complex mixture in the presence of a non-nucleophilic base
such as NaO-t-Bu (entry 6, Table 1) confirmed that
deacylation of 2a by a nucleophilic base precedes cyclo-
additionin thesecasesasinthecaseofBOR12 andalsoasin
the concise mechanism shown in Table 1. Although the
reaction was complete in about 15 min in all of the other
cases, entries 2À5 indicate that NaOEt in EtOH (entry 2)
and KOH in EtOH or MeOH (entries 3À4) were less
efficient as compared to NaOMe in MeOH (entry 5,
Table 1). Therefore, further reactions were conducted
using NaOMe in MeOH at room temperature.
(8) (a) For a recent review: Halcrow, M. A. Dalton Trans. 2009, 2059.
For a recent article: (b) Singer, R. A.; Dore, M.; Sieser, J. E.; Berliner,
M. A. Tetrahedron Lett. 2006, 47, 3727.
(9) (a) Schroter, H.-B.; Neumann, D.; Katritzky, A. R.; Swinbourne,
F. J. Tetrahedron 1966, 22, 2895. (b) Adesanya, S. A.; Nia, R.; Fontaine,
C.; Pais, M. Phytochemistry 1994, 35, 1053. (c) Ravikanth, V.; Ramesh,
P.; Diwan, P. V.; Venkateswarlu, Y. Biochem. Syst. Ecol. 2001, 29, 753.
(d) Wube, A. A.; Wenzig, E.-M.; Gibbons, S.; Asres, K.; Bauer, R.;
Bucar, F. Phytochem. 2008, 69, 982.
(10) (a) Savant, M. M.; Pansuriya, M. A.; Bhuva, V. C.; Kapuriya,
N.; Patel, N. A.; Audichya, B. V.; Pipaliya, V. P.; Naliapara, T. Y. J.
Comb. Chem. 2010, 12, 176. (b) Padwa, A.; Wannamaker, W. M.
Tetrahedron 1990, 46, 1145. (c) Kanishchev, S. O.; Bandera, P. Y.;
Timoshenko, M. V.; Rusanov, B. E.; But, S. A.; Shermolovich, G. Y.
Chem. Heterocycl. Compd. 2007, 43, 887. (d) Ouyang, G.; Cai, X.-J.;
Chen, Z.; Song, B.-A.; Bhadury, P. S.; Yang, S.; Jin, L.-H.; Xue, W.; Hu,
D.-Y.; Zeng, S. J. Agric. Food Chem. 2008, 56, 10160. (e) Gao, D.; Zhai,
H.; Parvez, M.; Back, T. G. J. Org. Chem. 2008, 73, 8057. (f) Jeon, D. J.;
Yu, D. W.; Kim, H. R.; Ryu, E. K. Heterocycles 1998, 48, 155.
(11) (a) Ohira, S. Synth. Commun. 1989, 19, 561. (b) Mueller, S.;
Liepold, B; Roth, G. J.; Bestmann, H. J. Synlett 1996, 521. (c) Meffre, P.;
Hermann, S.; Durand, P.; Reginato, G.; Riu, A. Tetrahedron 2002, 58,
5159.
Undertheaboveoptimizedconditions, variousaromatic
nitroalkenes 1aÀk were treated with sulfones 2a and 2b to
afford sulfonylpyrazoles 3aÀm in good to excellent yields
(Table 2). Comparison of entries 1 and 6 shows that there is
no appreciable difference in the yield when sulfones 2a and
2b were used (Table 2). No major aromatic substituent
effect is also observed on the yield or rate of reaction. For
instance, nitrostyrenes possessing a strongly electron-do-
nating substituent such as OMe (1a and 1fÀh, entries 1, 6,
8À10) and a strongly electron-withdrawing substituent
such as NO2 (1iÀk, entries 11À13) provide the adducts
in high yield (75À97%, Table 2). While increasing the
number of strongly electron-donating substituents (OR)
(12) Nitroalkenes:(a)Muruganantham, R.;Mobin, S. M.;Namboothiri,
I. N. N. Org. Lett. 2007, 9, 1125. (b) Muruganantham, R.; Namboothiri,
I. N. N. J. Org. Chem. 2010, 75, 2197. (c) Enones: Verma, D.; Mobin, S. M.;
Namboothiri, I. N. N. J. Org. Chem. 2011, 76, 4764.
(13) (a) Mohanan, K.; Martin, A. R.; Toupet, L.; Smietana, M.;
Vasseur, J. Angew. Chem., Int. Ed. 2010, 49, 3196. (b) Martin, A. R.;
Mohanan, K.; Toupet, L.; Vasseur, J. J.; Smietana, M. Eur. J. Org.
Chem. 2011, 3184.
(14) Xie, J.-W.; Wang, Z.; Yang, W.-J.; Kong, L.-C.; Xu, D.-C. Org.
Biomol. Chem. 2009, 7, 4352.
(15) (a) Sawada, T.; Nakada, M. Adv. Synth. Catal. 2005, 347, 1527.
(b) Honma, M.; Nakada, M. Tetrahedron Lett. 2003, 44, 2007.
(16) (a) Shi, A.; Blake, A. J.; Lewis, W.; Campbell, I. B.; Judkins,
B. D.; Moody, C. J. J. Org. Chem. 2010, 75, 152. (b) Lacrampe, F.;
ꢀ
Franc-oise Leost, F.; Doutheau, A. Tetrahedron Lett. 2000, 41, 4773. (c)
Doyle, M.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2003, 103,
2861.
Org. Lett., Vol. 13, No. 15, 2011
4017