4994
F.D. Ferrari et al. / Tetrahedron 67 (2011) 4988e4994
with cold satd aq ammonium chloride (20 mL). The organic phase
was dried over sodium sulfate, filtered and concentrated under
vacuum. Purification of the crude residue by flash column chro-
matography (silica gel, elution gradient 10%e33% diethyl ether in
petroleum ether) yielded 7-allyl-6-tosyl-azaspiro[4.5]dec-8-en-10-
3.52e3.40 (1H, m), 2.66e2.50 (2H, m), 2.43e2.34 (1H, m), 2.40 (3H,
s), 2.16e1.42 (14H, m); 13C NMR (100 MHz; CDCl3) dC: 142.7, 142.5,
142.4, 141.7, 136.0, 129.7, 129.6, 129.5, 126.6, 126.4, 126.2, 125.8,
117.6, 117.5, 75.5, 69.2, 56.4, 55.1, 40.7, 40.0, 38.5, 36.5, 36.1, 33.8,
27.3, 26.1, 25.2, 25.1, 23.4, 23.2, 22.9, 21.6, 21.5, 20.3; IR (thin film)
nmax¼3510, 3070, 2947, 2877, 1712, 1643, 1597, 1496, 1442, 1411,
one, 40 (311 mg, 64% over two steps) as
a white solid
(mp 89e90 ꢀC).
1311,1234, 1149, 1095, 1003, 964, 902, 810, 763, 702, 663, 601 cmꢁ1
;
1H NMR (400 MHz; CDCl3) dH: 7.56 (2H, d, J¼8.3 Hz), 7.21 (2H, d,
J¼8.3 Hz), 6.85 (1H, dd, J¼4.6, 10.2 Hz), 6.00e5.91 (1H, m), 5.88 (1H,
dd, J¼10.2, 1.8 Hz), 5.22e5.20 (1H, m), 5.19e5.16 (1H, m), 5.11e5.04
(1H, m), 2.82 (1H, dtt, J¼13.4, 6.4, 1.3 Hz), 2.60 (1H, dtm, J¼13.4,
8.1 Hz), 2.37 (3H, s), 2.13e2.02 (3H, m),1.80e1.71 (3H, m),1.44e1.32
(2H, m); 13C NMR (100 MHz; CDCl3) dC: 196.4, 146.2, 143.6, 139.0,
133.9, 129.8, 126.8, 124.8, 118.9, 73.1, 57.3, 42.5, 41.5, 32.2, 23.9, 22.6,
21.6; IR (thin film) nmax¼2957, 2874, 2360, 1681, 1598, 1575, 1495,
1432, 1416, 1377, 1341, 1329, 1307, 1264, 1166, 1089, 1067, 1000, 911,
846, 816, 794, 735, 702, 667, 647 cmꢁ1; HRMS (CI) observed
[MþH]þ 346.1476, calculated for C19H24NO3S 346.1477.
HRMS (CI) observed [MþH2OꢁH]þ 350.1788, calculated for
C19H28NO3S 348.1790.
3.2.19. (E)-Ethyl 2-methyl-4-(6-azaspiro[4.5]decan-7-yl)but-2-enoate,
43. A solution of 7-allyl-6-azaspiro[4.5]decane, 42 (25 mg,
75 mmol) in neat ethyl methacrylate (187 mL, 1.50 mmol) was
treated with HoveydaeGrubbs second generation catalyst (5 mg,
8 mmol) and the resulting mixture was heated to reflux overnight.
Upon completion by TLC analysis, the reaction mixture was con-
centrated under vacuum. Purification of the crude residue by flash
column chromatography (silica gel, elution gradient 20%e50% ethyl
acetate in hexanes) afforded (E)-ethyl 2-methyl-4-(6-azaspiro[4.5]
decan-7-yl)but-2-enoate, 43 (15 mg, 48%) as a yellow oil.
3.2.17. 7-Allyl-6-azaspiro[4.5]decan-10-one, 41. A solution of 7-Al-
lyl-6-azaspiro[4.5]dec-8-en-10-one 40 (300 mg, 1.89 mmol) in
1H NMR (400 MHz; CDCl3) dH: 7.73 (1H, d, J¼8.2 Hz), 7.65 (1.5H,
d, J¼8.4 Hz), 7.25 (2H, d, J¼8.1 Hz), 6.77 (0.4H, t, J¼7.0 Hz), 6.70
(0.6H, t, J¼6.8 Hz), 4.64e4.56 (0.4H, m), 4.37e4.29 (0.6H, m), 4.20
(0.8H, q, J¼7.1 Hz), 4.18 (1.2H, q, J¼7.0 Hz), 3.55e3.44 (1H, m),
2.88e2.59 (2H, m), 2.41 (3H, s), 2.43e2.34 (1.2H, m), 2.26e1.41
(14.8H, m), 1.29 (1.8H, t, J¼7.1 Hz), 1.30 (1.2H, t, J¼7.2 Hz); 13C NMR
(400 MHz; CDCl3) dC: 168.1, 168.0, 142.9, 142.6, 142.4, 141.6, 138.5,
138.4, 130.1, 130.0, 129.8, 129.7, 126.4, 125.9, 75.2, 72.9, 71.7, 69.3,
60.8, 60.7, 56.3, 54.9, 38.8, 36.9, 36.4, 35.1, 34.5, 34.0, 27.3, 26.5,
25.9, 25.2, 23.7, 23.5, 23.1, 21.6, 21.5, 21.2, 14.4 (2C), 13.0, 12.9; IR
(thin film) nmax¼3581, 2947, 2870, 2360, 2252, 1705, 1643, 1597,
1450, 1388, 1373, 1288, 1265, 1211, 1149, 1095, 1018, 972, 910, 810,
732, 663, 601 cmꢁ1; HRMS (FAB) observed [MþH2OꢁH]þ 436.2155,
calculated for C23H34NO5S 436.2158.
a
deoxygenated benzene/water mixture (100 mL:0.2 mL) was
transferred via cannula to a flask containing (triphenylphosphine)
copper hydride hexamer (1.0 g, 0.51 mmol) under argon. The re-
sultant red/brown suspension was stirred at room temperature
overnight before being opened to the air, and being allowed to stir
for 1 h. The suspension was filtered through Celite, concentrated
under vacuum, and azeotroped with toluene to remove any re-
sidual benzene. Purification of the crude residue by flash column
chromatography (silica gel, elution gradient 0%e10% ethyl acetate
in
hexanes)
afforded
7-allyl-6-azaspiro[4.5]decan-10-one
41 (258 mg, 85%) as a white solid (mp 88e90 ꢀC).
1H NMR (400 MHz; CDCl3) dH: 7.74 (2H, d, 8.3 Hz), 7.29 (2H, d,
8.1 Hz), 5.6e5.57 (1H, m), 5.06e5.04 (1H, m), 5.03e5.00 (1H, m),
4.05 (1H, ddt, J¼10.7, 6.3, 4.6 Hz), 2.66 (1H, dt, J¼15.7, 7.4 Hz), 2.50
(1H, ddd, J¼16.9, 9.3, 6.8 Hz), 2.42 (3H, s), 2.41e2.30 (3H, m),
2.20e2.03 (3H, m), 1.98e1.88 (1H, m), 1.86e1.76 (3H, m), 1.74e1.64
(1H, m), 1.57e1.45 (1H, m); 13C NMR (100 MHz; CDCl3) dC: 209.5,
143.4, 139.2, 134.2, 129.8, 127.2, 118.2, 76.5, 53.9, 39.4, 38.2, 36.6,
31.9, 25.5, 24.5, 24.1, 21.6; IR (thin film) nmax¼3070, 2955, 2877,
1712, 1643, 1597, 1442, 1411, 1311, 1234, 1149, 1095, 1003, 964, 902,
810, 763, 671 cmꢁ1; HRMS (CI) observed [MþH]þ 348.1632, calcu-
lated for C19H26NO3S 348.1633.
Acknowledgements
F.D.F. would like to thank the EPSRC and Eli Lilly for a post-
graduate studentship. We are grateful to Dr. Ian Sword, the EPSRC,
and the University of Glasgow for financial support.
References and notes
3.2.18. 7-Allyl-6-azaspiro[4.5]decane, 42. A room temperature solu-
tion of 7-allyl-6-azaspiro[4.5]decan-10-one, 41 (535 mg, 1.54 mmol)
in absolute ethanol (15 mL) was treated with tosylhydrazide (315 mg,
1.69 mmol) and the resultant solution was allowed to stir at room
temperature overnight. The solvent was evaporated under vacuum,
and the crude tosylhydrazone was dissolved in dry dichloromethane
(20 mL) and cooled down to 0 ꢀC. Diisobutylaluminium hydride
(5.4 mL, 1 M in hexanes) was then added dropwise to the solution
over a period of 45 min. The reaction was then stirred at 0 ꢀC until
completion by TLC analysis (2 h). The reaction mixture was diluted
with dichloromethane (20 mL), and quenched by the slowaddition of
15% sodium hydroxide solution (15 mL). The mixture was diluted
with water (10 mL), which resulted in the formation of a biphasic
mixture, which was extracted with diethyl ether (3ꢂ15 mL). The
combined organic layers were dried over sodium sulfate, filtered and
concentrated under reduced pressure. Purification of the crude resi-
due by flash column chromatography (silica gel, 0%e15%e100%
diethyl ether in petroleum ether) afforded 7-allyl-6-azaspiro[4.5]
decane 42 (281 mg, 55%) as a yellow oil.
1. Chou, T.; Kuramoto, M.; Otani, Y.; Shikano, M.; Yazawa, K.; Uemura, D. Tetra-
hedron Lett. 1996, 37, 3871.
2. Kuramoto, M.; Tong, C.; Yamada, K.; Chiba, T.; Hayashi, Y.; Uemura, D. Tetra-
hedron Lett. 1996, 37, 3867.
3. (a) Kamel, H. N.; Fronczek, F. R.; Fischer, N. H.; Slattery, M. Tetrahedron Lett.
2004, 45, 1995; (b) Kamel, H. N.; Ding, Y.; Li, X.-C.; Ferreira, D.; Fronczek, F. R.;
Slattery, M. J. Nat. Prod. 2009, 72, 900.
4. Kirk, H.; Choi, Y. H.; Kim, H. K.; Verpoorte, R.; Meijden, E. New Phytol. 2005, 167,
613.
5. For an excellent review on the synthetic chemistry of halichlorine and the
pinnaic acids please see: Clive, D. L. J.; Yu, M.; Wang, J.; Yeh, V. S. C.; Kang, S.
Chem. Rev. 2005, 105, 4483.
6. For more recent approaches: (a) Andrade, R. B.; Martin, S. F. Org. Lett. 2005, 7,
5733; (b) Wu, H.; Zhang, H.; Zhao, G. Tetrahedron 2007, 63, 6454; (c) Yang, S. H.;
Caprio, V. Synlett 2007, 1219; (d) Xu, S.; Arimoto, H.; Uemura, D. Angew. Chem.,
Int. Ed. 2007, 46, 5746; (e) Hurley, P. B.; Drake, G. R. J. Org. Chem. 2008, 73, 4131;
(f) Keck, G. E.; Heumann, S. A. Org. Lett. 2008, 10, 4783; (g) Yang, S. H.; Clark, G.
R.; Caprio, V. Org. Biomol. Chem. 2009, 7, 2981.
7. Hobson, S. J.; Marquez, R. Org. Biomol. Chem. 2006, 4, 3808.
8. Romero, J. A. C.; Tabacco, S. A.; Woerpel, K. A. J. Am. Chem. Soc. 2000, 122, 168.
9. For some recent examples of the aza-Achmatowicz rearrangement in synthesis:
(a) Cassidy, M. P.; Padwa, A. Org. Lett. 2004, 6, 4029; (b) Leverett, C. A.; Cassidy,
M. P.; Padwa, A. J. Org. Chem. 2006, 71, 8591.
10. Koulocheri, S. D.; Haroutounian, S. A.; Apostolopoulos, C. D.; Chada, R. K.;
Couladouros, E. A. Eur. J. Org. Chem. 1999, 1449.
11. Mahoney, W. S.; Brestensky, D. M.; Stryker, J. M. J. Am. Chem. Soc. 1988, 110, 291.
12. Hopman, J. C. P.; van den Berg, E.; Ollero Ollero, L.; Hiemstra, H.; Speckamp, W.
N. Tetrahedron Lett. 1995, 36, 4315.
1H NMR (400 MHz; CDCl3) dH: 7.73 (1.2H, d, J¼8.3 Hz), 7.65
(1.5H, d, 8.3 Hz), 7.24 (2H, d, J¼8.2 Hz), 5.87e5.71 (1.4H, m),
5.12e5.05 (2H, m), 4.56e4.49 (0.4H, m), 4.32e4.22 (0.6H, m),