3874
M. Kikuchi et al. / Tetrahedron Letters 52 (2011) 3872–3875
Scheme 5. Solid phase synthesis of callipeltin E (1).
and D-alloThr in a molar ratio of 1:0.6. After acetylation of the
Acknowledgements
amino group followed by converting the ammonium salt, separa-
tion of Ac- -alloThr-OH ammonium salt as a soluble in EtOH and
Ac- -Thr-OH ammonium salt as a less-soluble diastereomeric salt
by filtration obtained Ac- -alloThr-OH as 50% de. The sequence
of hydrolysis, recrystallization and Fmoc protection gave pure
Fmoc- -alloThr-OH (8) in 9% overall yield (Scheme 4).
D
We thank Dr. Nobutaka Fujii and Dr. Shinya Oishi (Kyoto Uni-
versity) for the measurement of mass spectra. This work was sup-
ported in part by the Japan Science Society (23-324) in Japan, and a
Grant-in-Aid for Scientific Research from the Japan Society for the
Promotion of Science (Grant 21689004 to H. K.)
L
D
D
Callipeltin E (1) was synthesized by Fmoc-based SPPS according
to the route shown in Scheme 5. As a solid support, 2-chlorotrityl
chloride resin was selected. Fmoc-N-MeAla-OH (3) was reacted
with 2-chlorotrityl chloride resin in DMF in the presence of iPr2-
NEt. The Fmoc group of the resulting resin was removed with
20% piperidine/DMF and Fmoc-(2R,3R)-bMeOTyr(OMEM)-OH (4)
was condensed by HATU14/HOAt15 in the presence of iPr2NEt. The
same deprotection/condensation procedure was repeated for the
introduction of Fmoc-N-MeGln-OH (5), Fmoc-Leu-OH (6), Fmoc-
References and notes
1. Zampella, A.; Randazzo, A.; Borbone, N.; Luciani, S.; Trevisi, L.; Debitus, C.;
D’Auria, M. V. Tetrahedron Lett. 2002, 43, 6163–6166.
2. Zampella, A.; D’Auria, M. V.; Gomez-Paloma, L.; Casapulla, A.; Debitus, C.;
Henin, Y. J. Am. Chem. Soc. 1996, 118, 6202–6209.
3. D’Auria, M. V.; Zampella, A.; Gomez-Paloma, L.; Minale, L.; Debitus, C.;
Roussakis, C.; LeBert, V. Tetrahedron 1996, 52, 9589–9596.
4. (a) D’Auria, M. V.; Sepe, V.; D’Orsi, R.; Bellotta, F.; Debitus, C.; Zampella, A.
Tetrahedron 2007, 63, 131–140; (b) Sepe, V.; D’Orsi, R.; Borbone, N.; D’Auria, M.
V.; Bifulco, G.; Monti, M. C.; Catania, A.; Zampella, A. Tetrahedron 2006, 62, 833–
840; (c) Terevisi, L.; Cargnelli, G.; Ceolotto, G.; Papparella, I.; Semplicini, A.;
Zampella, A.; D’Auria, M. V.; Luciani, S. Biochem. Pharmacol. 2004, 68, 1331–
1338.
5. For the recent synthetic studies of cyclic depsipeptides see: (a) Xie, W.; Ding,
D.; Zi, W.; Li, G.; Ma, D. Angew. Chem., Int. Ed. 2008, 47, 2844–2848; (b)
Krishnamoorthy, R.; Vazquez-Serrano, L. D.; Turk, J. A.; Kowalski, J. A.; Benson,
A. G.; Breaux, N. T.; Lipton, M. A. J. Am. Chem. Soc. 2006, 128, 15392–15393; (c)
Hamada, Y.; Shioiri, T. Chem. Rev. 2005, 105, 4441–4482.
6. (a) Konno, H.; Takebayashi, Y.; Nosaka, K.; Akaji, K. Heterocycles 2010, 81, 79–
89; (b) Hansen, D. B.; Wan, X.; Carroll, P. J.; Joullié, M. M. J. Org. Chem. 2005, 70,
3120–3126; (c) Okamoto, N.; Hara, O.; Makino, K.; Hamada, Y. J. Org. Chem.
2002, 67, 9210–9215; (d) Hu, X. E.; Kim, N. K.; Ledoussal, B. Org. Lett. 2002, 4,
4499–4502; (e) Williams, L.; Zhang, Z.; Shao, F.; Carroll, P.; Joullié, M. M.
Tetrahedron 1996, 52, 11673–11694.
D-Arg(Pbf)-OH (7), and Fmoc-D-alloThr-OH (8). In the attempt at
several coupling reagents, all coupling conditions monitored by
Keiser test16 were optimized to use the HATU/HOAt combination.
Finally, the resin was treated with TFA/CH2Cl2 (1:3 v/v) to cleave
from the resin and deprotection to give crude callipeltin E (1).
The crude product showed a single major peak on HPLC and was
purified by preparative RP-HPLC to afford callipeltin E (1) in
0.93% overall yield. Although decomposed products were not
shown on the HPLC profile under these conditions, treatment of
resin with TFA in a mixture of H2O as an additive afforded
by-products with desmethoxy or desmethyl functional groups of
the bMeOTyr residue. The spectroscopic data (1H NMR, ESIMS) on
synthetic 1 were identical to those of synthetic callipeltin E
reported by Lipton et al.10 or isolated natural product callipeltin
E1 within normal error limits.
7. Zampella, A.; D’Orsi, R.; Sepe, V.; Casapullo, A.; Monti, M. C.; D’Auria, M. V. Org.
Lett. 2005, 7, 3585–3589.
8. Konno, H.; Aoyama, S.; Nosaka, K.; Akaji, K. Synthesis 2007, 23, 3666–
3672.
In conclusion, we achieved the solid phase total synthesis of cal-
lipeltin E (1) based on the traditional Fmoc-SPPS. The configuration
of callipeltin E (1) was identified using Lipton’s revised structure.
This procedure is easily applicable to solid phase synthesis of the
analogues of callipeltins using commercially available Fmoc-amino
acids. The total synthesis of callipeltin A (2) is now underway.
9. Bassarello, C.; Zampella, A.; Monti, M. C.; Gomez-Paloma, L.; D’Auria, M. V.;
Riccio, R.; Bifulco, G. Eur. J. Org. Chem. 2006, 604–609.
10. Calimsiz, S.; Romos, I. M.; Lipton, M. A. J. Org. Chem. 2006, 71, 6351–6356.
11. Cranfill, D. C.; Lipton, M. A. Org. Lett. 2007, 9, 3511–3513.
12. (a) Freidinger, R. M.; Hinkle, J. S.; Perlow, D. S.; Arison, B. H. J. Org. Chem. 1983,
48, 77–81; (b) Aurelio, L.; Box, J. S.; Brownlee, R. T. C.; Hughes, A. B.; Sleebs, M.
M. J. Org. Chem. 2003, 68, 2652–2667.