3728
I. Valois-Escamilla et al. / Tetrahedron Letters 52 (2011) 3726–3728
8. (a) Dann, O.; Ruff, J.; Wolff, H. P.; Griessmeier, H. Liebigs Ann. Chem. 1984, 409–
Table 2
425; (b) Scribner, A.; Moore, J. A.; Ouvry, G.; Fisher, M.; Wyvratt, M.; Leavitt, P.;
Liberator, P.; Gurnett, A.; Brown, C.; Mathew, J.; Thompson, D.; Schmatz, D.;
Biftu, T. Bioorg. Med. Chem. Lett. 2009, 19, 1517–1521; (c) Izumi, T.; Yokota, T. J.
Heterocycl. Chem. 1992, 29, 1085–1090; (d) Du, Y.; Chang, J.; Reiner, J.; Zhao, K.
J. Heterocycl. Chem. 2008, 73, 2007–2010; (e) Clark, C. I.; White, J. M.; Kelly, D.
P.; Martin, R. F.; Lobachevsky, P. Aust. J. Chem. 1998, 51, 243–248.
TBAF induced cyclization of 5-bromo-2-(arylethynyl) phenylbenzylcarbamates 5a–o
to afford 5-bromo-2-arylindoles 6a–o
9. (a) Pauletti, P. M.; Cintra, L. S.; Braguine, C. G.; Filho, A. A. S.; Silva, M. L. A.;
Cunha, W. R.; Januário, A. H. Mar. Drugs 2010, 8, 1526–1549; (b) Kochanowska-
Karamyan, A. J.; Hamann, M. T. Chem. Rev. 2010, 110, 4489–4497; (c) Gupta, L.;
Talwar, A.; Chauhan, P. M. S. Curr. Med. Chem. 2007, 14, 1789–1803.
Entry
Carbamate
R
Reaction time (h)
Indole
Yieldc (%)
1
2
3
4
5
6
7
8
5a
5b
5c
5d
5e
5f
5g
5h
5i
5j
5k
5l
5m
5n
5o
H
4-CN
4-N02
2.0
1.0
0.5
1.5
1.0
1.5a
1.5
1.5
2.5
2.5
8.0
2.5
2.5
8.0
4.0b
6a
6b
6c
6d
6e
6f
6g
6h
6i
6j
6k
6l
6m
6n
6o
76
89
80
85
75
0
78
67
68
70
63
69
67
73
0
10. (a) Miki, Y.; Umemoto, M.; Nakamura, M.; Hibino, H.; Ohkita, N.; Kato, A.; Aoki,
Y. Heterocycles 2006, 68, 1893–1899; (b) Murray, M. M.; Kaszynski, P.; Kaisaki,
D. A.; Chang, W.; Dougherty, D. A. J. Am. Chem. Soc. 1994, 116, 8152–8161; (c)
Miyake, F. Y.; Yakushijin, K.; Horne, D. A. Org. Lett. 2000, 2, 2121–2123.
11. (a) Moyer, M. P.; Shiurba, J. F.; Rapoport, H. J. Org. Chem. 1986, 51, 5106–5110;
(b) Sakamoto, T.; Kondo, Y.; Iwashita, S.; Yamanaka, H. Chem. Pharm. Bull. 1987,
35, 1823–1828; (c) Carrera, G. M.; Sheppard, G. S. Synlett 1994, 93–94; (d)
Schumachert, R. W.; Davidson, B. S. Tetrahedron 1999, 55, 935–942; (e) Konda-
Yamada, Y.; Okada, C.; Yoshida, K.; Umeda, Y.; Arima, S.; Sato, N.; Kai, T.;
Takayanagi, H.; Harigaya, Y. Tetrahedron 2002, 58, 7851–7861; (f) Siu, J.;
Baxendale, I. R.; Ley, S. V. Org. Biomol. Chem. 2004, 2, 160–167.
12. Miyake, Y.; Kikugawa, Y. J. Heterocycl. Chem. 1983, 20, 349–352.
13. For selected examples see: (a) Bellina, F.; Calandri, C.; Cauteruccio, S.; Rossi, R.
Tetrahedron 2007, 63, 1970–1980; (b) Joucla, L.; Batail, N.; Djakovitch, L. Adv.
Synth. Catal. 2010, 352, 2929–2936; (c) Joucla, L.; Djakovitch, L. Adv. Synth.
Catal. 2009, 351, 673–714; (d) Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am.
Chem. Soc. 2008, 130, 8172–8174; (e) Potavathri, S.; Pereira, K. C.; Gorelsky, S.
I.; Pike, A.; LeBris, A. P.; DeBoef, B. J. Am. Chem. Soc. 2010, 132, 14676–14681; (f)
Kobayashi, K.; Iitsuka, D.; Fukamachi, S.; Konishi, H. Tetrahedron 2009, 65,
7523–7526; (g) Stuart, D. R.; Villemure, E.; Fagnou, K. J. Am. Chem. Soc. 2007,
129, 12072–12073; (h) Gallou, F.; Yee, N.; Qiu, F. H.; Senanayake, C.; Linz, G.;
Schnaubelt, J.; Soyka, R. Synlett 2004, 883–885; (i) Liang, Z.; Yao, B.; Zhang, Y.
Org. Lett. 2010, 12, 3185–3187; (j) Liu, F.; Ma, D. J. Org. Chem. 2007, 72, 4844–
4850; (k) Kraus, G. A.; Guo, H. Org. Lett. 2008, 10, 3061–3063.
14. (a) Larock, R. C. Top. Organomet. Chem. 2005, 14, 147–182; (b) Krüger, K.;
Tillack, A.; Beller, M. Adv. Synth. Catal. 2008, 350, 2153–2167; (c) Alex, K.;
Tillack, A.; Schwarz, N.; Beller, M. Angew. Chem., Int. Ed. 2008, 47, 2304–2307;
(d) Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem.
Soc. 2008, 130, 16474–16475; (e) Okamoto, N.; Miwa, Y.; Minami, H.; Takeda,
K.; Yanada, R. Angew. Chem., Int. Ed. 2009, 48, 9693–9696; (f) Ackermann, L.;
Sandmann, R.; Villar, A.; Kaspar, L. T. Tetrahedron 2008, 64, 769–777; (g)
Denmark, S. E.; Baird, J. D. Tetrahedron 2009, 65, 3120–3129; (h) Nakamura, I.;
Sato, Y.; Konta, S.; Terada, M. Tetrahedron Lett. 2009, 50, 2075–2077; (i) Boyer,
A.; Isono, N.; Lackner, S.; Lautens, M. Tetrahedron 2010, 66, 6468–6482; (j)
Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Perboni, A.; Sferrazza, A.; Stabile, P. Org.
Lett. 2010, 12, 3279–3281; (k) Shi, Z.; Zhang, C.; Li, S.; Pan, D.; Ding, S.; Cui, Y.;
Jiao, N. Angew. Chem., Int. Ed. 2009, 48, 4572–4576; (l) Takaya, J.; Udagawa, S.;
Kusama, H.; Iwasawa, N. Angew. Chem., Int. Ed. 2008, 47, 4906–4909; (m)
Lamar, A. A.; Nicholas, K. M. Tetrahedron 2009, 65, 3829–3833; (n) Carpita, A.;
Ribecai, A. Tetrahedron Lett. 2009, 50, 6877–6881; (o) Nakamura, I.; Mizushima,
Y.; Yamagishi, U.; Yamamoto, Y. Tetrahedron 2007, 63, 8670–8676; (p) Lu, B. Z.;
Zhao, W.; Wei, H. X.; Dufour, M.; Farina, V.; Senanayake, C. H. Org. Lett. 2006, 8,
3271–3274; (q) Shen, M.; Li, G.; Lu, B. Z.; Hossain, A.; Roschangar, F.; Farina, V.;
Senanayake, C. H. Org. Lett. 2004, 6, 4129–4132; (r) Oh, C. H.; Karmakar, S.;
Park, H. S.; Ahn, Y. C.; Kim, J. W. J. Am. Chem. Soc. 2010, 132, 1792–1793; (s) Li,
G.; Huang, X.; Zhang, L. Angew. Chem., Int. Ed. 2008, 47, 346–349.
4-COCH3
4-CHO
2-CHO
4-CO2CH3
4-F
4-CH3
3-CH3
2-CH3
4-OCH3
3-OCH3
2-OCH3
4-N(CH3)2
9
10
11
12
13
14
15
a
Decomposition of starting carbamate 5f to a complex mixture was observed.
Only deprotection of carbamate 5o was observed, the corresponding free ani-
line was isolated in low yield and decomposed upon standing.
b
c
Isolated yield after chromatography.
and para isomers. The mild conditions employed in the Sonogash-
ira coupling and the cyclization step, together with its tolerance to
a range of functional groups, make this method a useful comple-
ment to previous strategies to obtain 6-bromo-2-arylindoles that
could be extended to other C-6 functionalized congeners.
Acknowledgment
The authors are grateful for financial support of this work from
CONACYT (Grant CB-2006-61247) and predoctoral fellowships for
I.V. and L.F.R.
Supplementary data
Supplementary data (experimental procedures and copies of 1H
and 13C NMR spectra for all compounds) associated with this arti-
15. (a) Heravi, M. M.; Sadjadi, S. Tetrahedron 2009, 65, 7761–7775; (b) Tykwinski,
R. R. Angew. Chem., Int. Ed. 2003, 42, 1566–1568; (c) Plenio, H. Angew. Chem., Int.
Ed. 2008, 47, 6954–6956; (d) Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107,
874–922; (e) Doucet, H.; Hierso, J. C. Angew. Chem., Int. Ed. 2007, 46, 834–871;
(f) Lipshutz, B. H.; Chung, D. W.; Rich, B. Org. Lett. 2008, 10, 3793–3796.
16. Rajesh, K.; Somasundaram, M.; Saiganesh, R.; Balasubramanian, K. K. J. Org.
Chem. 2007, 72, 5867–5869.
17. (a) Zhou, N.; Wang, L.; Thompson, D. W.; Zhao, Y. Org. Lett. 2008, 10, 3001–
3004; (b) Frahn, J.; Schlüter, A. D. Synthesis 1997, 1301–1304.
18. For recent synthesis of indoles based on rearrangement reactions of 2-
iodobenzoic acid see: (a) Leogane, O.; Lebel, H. Angew. Chem., Int. Ed. 2008, 47,
350–352; (b) Okamoto, N.; Miwa, Y.; Minami, H.; Takeda, K.; Yanada, R. Angew.
Chem., Int. Ed. 2009, 48, 9693–9696.
References and notes
1. Harper, S.; Pacini, B.; Avolio, S.; Di Filippo, M.; Migliaccio, G.; Laufer, R.; De
Francesco, R.; Rowley, M.; Narjes, F. J. Med. Chem. 2005, 48, 1314–1317.
2. Trotter, B. W.; Quigley, A. G.; Lumma, W. C.; Sisko, J. T.; Walsh, E. S.; Hamann, C.
S.; Robinson, R. G.; Bhimnathwala, H.; Kolodin, D. G.; Zheng, W.; Buser, C. A.;
Huber, H. E.; Lobell, R. B.; Kohl, N. E.; Williams, T. M.; Graham, S. L.; Dinsmore,
C. J. Bioorg. Med. Chem. Lett. 2001, 11, 865–869.
3. Ambrus, J. I.; Kelso, M. J.; Bremner, J. B.; Ball, A. R.; Casadei, G.; Lewis, K. Bioorg.
Med. Chem. Lett. 2008, 18, 4294–4297.
4. Kher, S.; Lake, K.; Sircar, I.; Pannala, M.; Bakir, F.; Zapf, J.; Xu, K.; Zhang, S. H.;
Liu, J.; Morera, L.; Sakurai, N.; Jack, R.; Cheng, J. F. Bioorg. Med. Chem. Lett. 2007,
17, 4442–4446.
19. Kim, J. G.; Jang, D. O. Synlett 2008, 2072–2074.
20. Mphahlele, M. J.; Lesenyeho, L. G.; Makelane, H. R. Tetrahedron 2010, 66, 6040–
6046. and references cited therein.
5. Cooper, L. C.; Chicchi, G. G.; Dinnell, K.; Elliott, J. M.; Hollingworth, G. J.; Kurtz,
M. M.; Locker, K. L.; Morrison, D.; Shaw, D. E.; Tsao, K. L.; Watt, A. P.; Williams,
A. R.; Swain, C. J. Bioorg. Med. Chem. Lett. 2001, 11, 1233–1236.
6. Chu, L.; Lo, J. L.; Yang, Y. T.; Cheng, K.; Smith, R. G.; Fisher, M. H.; Wyvratt, M. J.;
Goulet, M. T. Bioorg. Med. Chem. Lett. 2001, 11, 515–517.
7. Dykstra, K. D.; Guo, L.; Birzin, E. T.; Chan, W.; Yang, Y. T.; Hayes, E. C.; DaSilva, C.
A.; Pai, L. Y.; Mosley, R. T.; Kraker, B.; Fitzgerald, P. M. D.; DiNinno, F.; Rohrer, S.
P.; Schaeffer, J. M.; Hammond, M. L. Bioorg. Med. Chem. Lett. 2007, 17, 2322–
2328.
21. For recent examples of chemoselective Sonogashira coupling see: (a) Layek, M.;
Gajare, V.; Kalita, D.; Islam, A.; Mukkanti, K.; Pal, M. Tetrahedron 2009, 65,
4814–4819; (b) Layek, M.; Rao, A. V. D.; Gajare, V.; Kalita, D.; Barange, D. K.;
Islam, A.; Mukkanti, K.; Pal, M. Tetrahedron Lett. 2009, 50, 4878–4881.
22. (a) Yasuhara, A.; Kanamori, Y.; Kaneko, M.; Numata, A.; Kondo, Y.; Sakamoto, T.
J. Chem. Soc., Perkin Trans. 1 1999, 529–534; (b) Suzuki, N.; Yasaki, S.; Yasuhara,
A.; Sakamoto, T. Chem. Pharm. Bull. 2003, 51, 1170–1173.