Edge Article
Chemical Science
case, the supramolecular association of 31 and 4-Me-Hantzsch
ester (4-Me-HE) generated an EDA complex26 32 that under-
went photoinduced SET upon irradiation of its charge-transfer
band with blue light.
Extension of this chemistry to thiocarbamate 33 proved more
challenging due to the tendency of these species to undergo
radical O / S rearrangement.27 Nevertheless, optimisation of
the reaction parameters led to conditions for its implementa-
tion in useful yield using oxidative quenching of the photo-
catalyst Ir(ppy)3 as the initiation step.
Notes and references
1 (a) R. Richa and R. P. Sinha, EXCLI J., 2014, 13, 592–610; (b)
M. C. White and J. Zhao, J. Am. Chem. Soc., 2018, 140, 13988–
14009; (c) S. D. Roughley and A. M. Jordan, J. Med. Chem.,
2011, 54, 3451–3479; (d) D. G. Brown and J. Bostrom, J.
Med. Chem., 2016, 59, 4443–4458.
2 D. C. Blakemore, L. Castro, I. Churcher, D. C. Rees,
A. W. Thomas, D. M. Wilson and A. Wood, Nat. Chem.,
2018, 10, 383–394.
¨
In all three cases, we believe that upon alkyl radical F
generation, reversible reaction with HCHO and fast trapping of
H with PPh3, leads to phosphoranyl radical J that could sustain
a chain propagation based on SET (instead of XAT) as the alkyl
radical re-generation step. The feasibility of this step is sup-
ported by the matching redox potentials for SET between M (see
Scheme 2D) and those of 31 and 33.
3 (a) I. Ryu, N. Sonoda and D. P. Curran, Chem. Rev., 1996, 96,
177–194; (b) G. Yuan, C. Qi, W. Wu and H. Jiang, Current
Opinion in Green and Sustainable Chemistry, 2017, 3, 22–27;
(c) Y. Shi, B.-W. Pan, Y. Zhou, J. Zhou, Y.-L. Liu and
F. Zhou, Org. Biomol. Chem., 2020, 18, 8597–8619; (d)
T. E. Hurst, J. A. Deichert, L. Kapeniak, R. Lee, J. Harris,
P. G. Jessop and V. Snieckus, Org. Lett., 2019, 21, 3882–3885.
4 B. Fraser-Reid, N. L. Holder and M. B. Yunker, J. Chem. Soc.,
Chem. Commun., 1972, 1286–1287.
5 (a) A. Citterio, A. Gentile, F. Minisci, M. Serravalle and
S. Ventura, Tetrahedron, 1985, 41, 617–620; (b) C. A. Huff,
R. D. Cohen, K. D. Dykstra, E. Streckfuss, D. A. DiRocco
and S. W. Krska, J. Org. Chem., 2016, 81, 6980–6987; (c)
Conclusions
We have demonstrated that the unfavorable addition of carbon
radicals to HCHO can be overcome by trapping the resulting O-
radical with Ph3P in a fast and irreversible reaction. This leads
to the generation of a phosphoranyl radical that can sustain
chain propagations based on either XAT or SET. This provides
versatility to the hydroxymethylation protocol that can be
applied to alkyl iodides and Katritzky's salts in high yield and
also thiocarbamates.
´
F. Rammal, D. Gao, S. Boujnah, A. A. Hussein, J. Lalevee,
A.-C. Gaumont, F. Morlet-Savary and S. Lakhdar, ACS
Catal., 2020, 10, 13710–13717.
6 (a) S. Kim, I. Y. Lee, J.-Y. Yoon and D. H. Oh, J. Am. Chem.
Soc., 1996, 118, 5138–5139; (b) S. Kim and S. Y. Jon,
Tetrahedron Lett., 1998, 39, 7317–7320; (c) M. Shee,
S. S. Shah and N. D. P. Singh, Chem. Commun., 2020, 56,
4240–4243; (d) D. J. Hart and F. L. Seely, J. Am. Chem. Soc.,
1988, 110, 1631–1633; (e) H. Miyabe, R. Shibata, C. Ushiro
and T. Naito, Tetrahedron Lett., 1998, 39, 631–634.
7 Z. Fan, Z. Zhang and C. Xi, ChemSusChem, 2020, 13, 6201–
6218.
Data availability
The data that support the ndings of this study are available in
the ESI and from the corresponding author upon reasonable
request.
8 (a) I. Ryu, K. Kusano, A. Ogawa, N. Kambe and N. Sonoda, J.
Am. Chem. Soc., 1990, 112, 1295–1297; (b) I. Ryu, K. Kusano,
H. Yamazaki and N. Sonoda, J. Org. Chem., 1991, 56, 5003–
5005.
Author contributions
FJ and DL designed the project. LC, CS, TC and FJ performed all
the synthetic experiments. JJD performed some mechanistic
experiments. NSS performed the computational studies. All
authors analysed the results and wrote the manuscript.
9 (a) V. Gupta and D. Kahne, Tetrahedron Lett., 1993, 34, 591–
594; (b) H. Matsubara, S. Yasuda, H. Sugiyama, I. Ryu, Y. Fujii
and K. Kita, Tetrahedron, 2002, 58, 4071–4076; (c)
S. Kobayashi, T. Kawamoto, S. Uehara, T. Fukuyama and
I. Ryu, Org. Lett., 2010, 12, 1548–1551; (d) S. Kobayashi,
T. Kinoshita, T. Kawamoto, M. Wada, H. Kuroda,
A. Masuyama and I. Ryu, J. Org. Chem., 2011, 76, 7096–
7103; (e) T. Kawamoto, T. Fukuyama and I. Ryu, J. Am.
Chem. Soc., 2012, 134, 875–877; (f) T. Kawamoto, T. Okada,
D. P. Curran and I. Ryu, Org. Lett., 2013, 15, 2144–2147.
10 M. Oyama, J. Org. Chem., 1965, 30, 2429–2432.
11 See ESI† for more information.
Conflicts of interest
There are no conicts to declare.
Acknowledgements
DL thanks EPSRC for a Fellowship (EP/P004997/1), and the
European Research Council for a research grant (758427). LC
thanks the Integrated Catalysis (iCAT) CDT (EPSRC grant: EP/
S023755/1) for a PhD Studentship. CS thanks AstraZeneca for
a PhD Studentship. NSS acknowledges the Deanship of Scien-
tic Research at the King Faisal University for the nancial
support under the annual research grants.
12 C. Bernardon, J. Organomet. Chem., 1989, 367, 11–17.
´
13 (a) T. Constantin, M. Zanini, A. Regni, N. S. Sheikh, F. Julia
and D. Leonori, Science, 2020, 367, 1021–1026; (b)
´
T. Constantin, F. Julia, N. S. Sheikh and D. Leonori, Chem.
Sci., 2020, 11, 12822–12828, for a Cu/peroxide mediated
© 2021 The Author(s). Published by the Royal Society of Chemistry
Chem. Sci., 2021, 12, 10448–10454 | 10453