LETTER
Guanidine-Ligated Cobalt Catalyst for Alkyne Cyclotrimerizations
1111
Table 2 Cyclotrimerization of Terminal and Internal Alkynes
Acknowledgment
..
R1
We acknowledge financial support of this research from The Ohio
State University.
R2
R1
R2
R1
R1 R2
R1 R1
R2
R1
CoCl2
TIPG
R2
Zn, ZnI2
MeCN
References and Notes
R2
3
R2
4
(1) For reviews, see: (a) Ishikawa, T. In Superbases for Organic
Synthesis: Guanidines, Amidines, Phosphazines, and
Related Organocatalysts; Ishikawa, T., Ed.; John Wiley and
Sons: Chichester, 2009. (b) Berlinck, R. G. S.; Burtoloso, A.
C. B.; Kossuga, M. H. Nat. Prod. Rep. 2008, 25, 919.
(c) Oliver, D. W.; Dormehl, I. C.; Wikberg, J. E. S.;
Dambrova, M. Med. Chem. Res. 2004, 13, 427. (d) Masic,
L. P. Curr. Med. Chem. 2006, 13, 3627. (e) Blondeau, P.;
Segura, M.; Pérez-Fernández, R.; de Mendoza, J. Chem.
Soc. Rev. 2007, 36, 198. (f) Berlinck, R. G. S. Nat. Prod.
Rep. 1999, 16, 339.
Entry Alkynea
CoCl2, TIPG Zn,
(mol%)
Ratio of Yield
ZnI2 3/4b
(%)c
1
2
4
95:5
87
4
2
2
2
4
4
99:1
74
98
Ph
(2) Mayr, L. M.; Schmid, F. X. Biochemistry 1993, 32, 7994.
(3) Young, C. W.; Schochetman, G.; Hodas, S.; Balis, H. E.
Cancer Res. 1967, 27, 535.
3
85:15
MeO2C
4
2
2
4
4
81:19
85:15
89
94
(4) (a) Colabufo, N. A.; Berardi, F.; Contino, M.; Niso, M.;
TMS
Abate, C.; Perrone, R.; Tortorella, V. Naunyn-
Schmiedeberg’s Arch. Pharmacol. 2004, 370, 106.
(b) Palagiano, E.; De Marino, S.; Minale, L.; Riccio, R.;
Zollo, F.; Iorizzi, M.; Carré, J. B.; Debitus, C.; Lucarain, L.;
Provost, J. Tetrahedron 1995, 51, 3675. (c) Kourany-
Lefoll, E.; Laprevote, O.; Sevenet, T.; Montagnac, A.; Pais,
M.; Debitus, C. Tetrahedron 1994, 50, 3415.
5
TBSO
6
2
4
94:6
94
Cl
4
7
8
2
4
4
4
4
8
8
8
93:7
–
98
93
98
98
NC
(5) (a) Seiple, I. B.; Su, S.; Young, I. S.; Lewis, C. A.;
Yamaguchi, J.; Baran, P. S. Angew. Chem. Int. Ed. 2010, 49,
1095. (b) Aron, Z. D.; Overman, L. E. J. Am. Chem. Soc.
2005, 127, 3380. (c) Overman, L. E.; Rhee, Y. H. J. Am.
Chem. Soc. 2005, 127, 15652.
(6) Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719.
(7) (a) Theberge, A. B.; Whyte, G.; Frenzel, M.; Fidalgo, L. M.;
Wootton, R. C. R.; Huck, W. T. S. Chem. Commun. 2009,
6225. (b) Ma, X.; Zhou, Y.; Zhang, J.; Zhu, A.; Jiang, T.;
Han, B. Green Chem. 2008, 10, 59. (c) Li, S.; Lin, Y.; Cao,
J.; Zhang, S. J. Org. Chem. 2007, 72, 4067. (d) Li, S.; Xie,
H.; Zhang, S.; Lin, Y.; Xu, J.; Cao, J. Synlett 2005, 1885.
(e) Luzzio, F. A.; Mayorov, A. V. Synlett 2003, 532.
(f) Trost, B. M.; Yasutaka, T. J. Am. Chem. Soc. 2001, 123,
7162.
3
9
96:4
75:25
Ph
10
TBSO
a The alkyne is added after all other reagents are heated at 50 °C for 5
min.
b Regioselectivity was determined by GC.
c Isolated yield is an average of two 1 mmol experiments.
In summary, we have reported a rare example of a guani-
dine-ligated transition-metal-catalyzed reaction. Our cat-
alyst operates at lower loadings compared to typical
cyclotrimerization reaction conditions, while still provid-
ing high yields and regioselectivities of the obtained arene
products. This guanidine catalyst also allowed the cyclo-
trimerization of internal alkynes at enhanced rates with re-
spect to the previous catalysts employed in this reaction.
From a fundamental perspective, the success of this cata-
lyst in cyclotrimerization reactions of alkynes further ex-
poses guanidines as ligands in metal-catalyzed processes.
Future work will explore the use of similar guanidine-
ligated complexes in an aqueous medium. Unfortunately,
the initial reactions to perform the guanidine-ligated co-
balt-catalyzed cyclotrimerization in water or a water–
THF mixture proved fruitless and ligand modification is
under way.
(8) For reviews, see: (a) Galan, B. R.; Rovis, T. Angew. Chem.
Int. Ed. 2009, 48, 2830. (b) Gandon, V.; Aubert, C.;
Malacria, M. Chem. Commun. 2006, 2209. (c) Chopade, P.
R.; Louie, J. Adv. Synth. Catal. 2006, 348, 2307. (d) Kotha,
S.; Brahmachar, E.; Lahiri, K. Eur. J. Org. Chem. 2005,
4741. (e) Malacria, M.; Aubert, C.; Renaud, J. L. Methods of
Molecular Transformations, In Science of Synthesis
(Houben–Weyl), Vol. 1; Lautens, M.; Trost, B. M., Eds.;
Thieme: Stuttgart, 2001, 439. (f) Saito, S.; Yamamoto, Y.
Chem. Rev. 2000, 100, 2901. (g) Ojima, I.; Tzamarioudaki,
M.; Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96, 635.
(h) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96,
49. (i) Grotjahn, D. B. In Comprehensive Organometallic
Chemistry II, Vol. 12; Abel, E. W.; Stone, F. G. A.;
Wilkinson, G.; Hegedus, L., Eds.; Pergamon Press: Oxford,
1995, 741. (j) Schore, N. E. In Comprehensive Organic
Synthesis, Vol. 5; Trost, B. M.; Fleming, I.; Paquette, L. A.,
Eds.; Pergamon Press: Oxford, 1991, 1129. (k) Vollhardt,
K. P. C. Angew. Chem., Int. Ed. Engl. 1984, 23, 539.
(9) (a) Morohashi, N.; Yokomakura, K.; Hattori, T.; Miyano, S.
Tetrahedron Lett. 2006, 47, 1157. (b) Ozerov, O. V.;
Ladipo, F. T.; Patrick, B. O. J. Am. Chem. Soc. 1999, 121,
7941.
Supporting Information for this article is available online at
Synlett 2011, No. 8, 1109–1112 © Thieme Stuttgart · New York