situation was recently discussed by Matouzenko et al.13 with the
same symmetries in the HS and LS states and a symmetry
breaking on the plateau.14 As different intermolecular interactions
are observed for the disordered parts of the HS state (Fig. S2,
ESIw) the differences in the hysteresis width can be explained with
differences in the H-bond network. It should be noted that the
space group does not change upon ST and thus the observed
hysteresis cannot be related to a structural phase transition but
must be related to other cooperative effects. Due to the long alkyl
chains in the outer periphery of the complex the observed change
in the cell volume (DV/V = 2.9%) is very small, especially when
the contribution from the thermal contraction is considered. Thus
the hysteresis cannot solely be related to elastic interactions.
The changes in the hydrogen bond network are one possible
3 (a) O. Kahn and C. J. Martinez, Science, 1998, 279, 44; (b) O. Kahn,
C. Jay, J. Krober, R. Claude and F. Groliere, Patent, EP06665611995;
¨
(c) J.-F. Le
´
(d) J.-F. Le
tard, O. Nguyen and N. Daro, Patent, FR05124762005;
tard, P. Guionneau and L. Goux-Capes, in Topics in
´
Current Chemistry, ed. P. Gutlich et and H. A. Goodwin, Springer
¨
WienNew York, 2004, vol. 235, p. 221; (e) A. Galet, A. B. Gaspar,
M. C. Munoz, G. V. Bukin, G. Levchenko and J. A. Real, Adv.
Mater., 2005, 17, 2949.
4 Y. Garcia, V. Ksenofontov and P. Gutlich, Hyperfine Interact.,
¨
2002, 139–140, 543.
5 Y. Garcia, V. Ksenofontov, S. Mentior, M. M. Dırtu, C. Gieck,
A. Bhatthacharjee and P. Gutlich, Chem.–Eur. J., 2008, 14, 3745.
¨
6 (a) I. Boldog, A. B. Gaspar, V. Martinez, P. Pardo-Ibanez,
V. Ksenofontov, A. Bhattacharjee, P. Gutlich and J. A. Real,
¨
Angew. Chem., Int. Ed., 2008, 47, 6433–6437; (b) S. Cobo,
G. Molnar, J. A. Real and A. Bousseksou, Angew. Chem., Int.
Ed., 2006, 45, 5786–5789; (c) G. Molnar, S. Cobo, J. A. Real,
´
F. Carcenac, E. Daran, C. Vieu and A. Bousseksou, Adv. Mater.,
2007, 19, 2163; (d) M. Cavallini, I. Bergenti, S. Milita, G. Ruani,
I. Salitros, Z.-R. Qu, R. Chandrasekar and M. Ruben, Angew.
Chem., Int. Ed., 2008, 47, 8596; (e) A. D. Naik, L. Stappers,
J. Snauwaert, J. Fransaer and Y. Garcia, Small, 2010, 6,
2842.
explanation for the cooperative spin transition.15
A very
interesting feature concerns the second peak in the DSC measure-
ments that is related to the gradual part in the ST curve. This
thermal anomaly could result from an order–disorder transition of
the pyridine ring,16 which is disordered in the HS state and that
orders in the LS, as detected by X-ray diffraction. Such types of
transitions are known to be able to control the course of a ST
leading to gradual regions.17 The disappearance of the small step
after the first cooling/heating cycle could be related to small
changes in the molecule structure or the intermolecular inter-
actions due to this order–disorder transition.
7 (a) M. Seredyuk, A. B. Gaspar, V. Ksenofontov, Y. Galyametdinov,
M. Verdaguer, F. Villain and P. Gutlich, Inorg. Chem., 2008, 47,
¨
10232–10245; (b) M. Seredyuk, A. B. Gaspar, V. Ksenofontov,
Y. Galyametdinov, J. Kusz and P. Gutlich, Adv. Funct. Mater.,
¨
2008, 18, 2089; (c) M. Seredyuk, A. B. Gaspar, V. Ksenofontov,
Y. Galyametdinov, J. Kusz and P. Gutlich, J. Am. Chem. Soc., 2008,
¨
130, 1431.
8 (a) J. A. Real, A. B. Gaspar, V. Niel and M. C. Munoz, Coord. Chem.
´
Rev., 2003, 236, 121; (b) A. Bousseksou, G. Molnar, J. A. Real and
The introduction of long alkyl chains in the outer periphery
of Schiff base like ligands did lead to head–tail molecules that
crystallise in a lipid layer like structure and show a cooperative
spin transition with a wide thermal hysteresis loop (up to
B50 K). The X-ray structure solved in the HS and LS states
allows a deeper insight into the ST mechanism of 1 which
results from an interplay involving the H-bond network and
order–disorder transition of the pyridine rings.
K. Tanaka, Coord. Chem. Rev., 2007, 251, 1822–1833.
9 (a) A. B. Gaspar, V. Ksenofontov, M. Seredyuk and P. Gutlich,
¨
Coord. Chem. Rev., 2005, 249, 2661–2676; (b) A. B. Gaspar,
M. Seredyuk and P. Gutlich, J. Mol. Struct., 2009, 924–926,
¨
9–19.
10 (a) B. Weber, Coord. Chem. Rev., 2009, 253, 2432; (b) B. Weber
and E.-G. Jager, Eur. J. Inorg. Chem., 2009, 465.
¨
11 (a) B. Weber, E. Kaps, J. Weigand, C. Carbonera, J.-F. Letard,
K. Achterhold and F. Parak, Inorg. Chem., 2008, 47, 487;
(b) B. Weber, J. Obel, D. Henner-Va
Inorg. Chem., 2009, 5527.
12 (a) Y. Garcia, O. Kahn, L. Rabardel, B. Chansou, L. Salmon and
J.-P. Tuchagues, Inorg. Chem., 1999, 38, 4663;
´
squez and W. Bauer, Eur. J.
We thank S. Albrecht and P. Mayer (University of Munich)
for the collection of the X-ray data and P. Thoma (University
of Bayreuth) for the collection of the NMR data.
Support from the University of Bayreuth, the Deutsche
Forschungsgemeinschaft (WE 3546_4-1), the Fonds der
Chemischen Industrie, the IAP-VI (P6/17) INANOMAT,
(b) G. S. Matouzenko, J.-F. Letard, S. Lecocq, A. Bousseksou,
L. Capes, L. Salmon, M. Perrin, O. Kahn and A. Collet, Eur. J.
Inorg. Chem., 2001, 2935; (c) W. Hibbs, P. J. van Koningsbruggen,
A. M. Arif, W. W. Shum and J. S. Miller, Inorg. Chem., 2003, 42,
5645; (d) P. Poganiuch, S. Decurtins and P. Gutlich, J. Am. Chem.
¨
FNRS (FRFC 2.4508.08) and ARC-Acade
´
mie Louvain is
Soc., 1990, 112, 3270; (e) L. Wiehl, Acta Crystallogr., Sect. B:
Struct. Sci., 1993, 49, 289; (f) R. Hinek, H. Spiering,
gratefully acknowledged.
D. Schollmeyer, P. Gutlich and A. Hauser, Chem.–Eur. J., 1996,
¨
2, 1427; (g) B. Weber, C. Carbonera, C. Desplanches and
J.-F. Letard, Eur. J. Inorg. Chem., 2008, 1589; (h) B. Li,
´
Notes and references
1 (a) L. Cambi and L. Szego
¨
, Ber. Dtsch. Chem. Ges. A, 1931, 64,
167; (b) L. Cambi and L. Malatesta, Ber. Dtsch. Chem. Ges. B,
1937, 70, 2067.
R.-J. Wei, R.-B. Huang, L.-S. Zheng and Z. Zheng, J. Am. Chem.
Soc., 2010, 132, 1558–1566; (i) R.-J. Wei, J. Tao, R.-B. Huang,
L.-S. Zheng and Z. Zheng, Inorg. Chem., 2011, 50, 1170–1172.
2 (a) H. A. Goodwin, Coord. Chem. Rev., 1976, 18, 293; (b) E. Konig,
¨
H. Spiering, Angew. Chem., Int. Ed. Engl., 1994, 33, 2024 and
references therein; (d) ‘‘Spin Crossover in Transition Metal Compounds
13 G. S. Matouzenko, D. Luneau, G. Molnar, N. Ould-Moussa,
´
S. Zein, S. A. Borshch, A. Bousseksou and F. Averseng, Eur. J.
Inorg. Chem., 2006, 2671–2682.
¨
Struct. Bonding, 1991, 76, 51; (c) P. Gutlich, A. Hauser and
14 M. B.-L. Cointe, N. O. Moussa, E. Trzop, A. More
L. Toupet, A. Bousseksou, J. F. Letard and G. S. Matouzenko,
Phys. Rev. B, 2010, 82, 214106.
´
ac, G. Molnar,
I–III’’, ed. P. Gutlich and H. A. Goodwin, Topics in Current
´
¨
Chemistry, Springer-Verlag Berlin Heidelberg, New York, 2004;
(e) J. A. Real, A. B. Gaspar and M. C. Munoz, Dalton Trans., 2005,
2062; (f) K. Nakano, N. Suemura, K. Yoneda, S. Kawata and
S. Kaizaki, Dalton Trans., 2005, 740; (g) O. Sato, J. Tao and
Y.-Z. Zhang, Angew. Chem., 2007, 119, 2200 (Angew. Chem., Int.
Ed., 2007, 46, 2152); (h) J. A. Kitchen and S. Brooker, Coord. Chem.
Rev., 2008, 252, 2072; (i) K. S. Murray, Eur. J. Inorg. Chem., 2008,
3101; (j) M. A. Halcrow, Coord. Chem. Rev., 2009, 253, 2493–2514;
(k) S. Brooker and J. A. Kitchen, Dalton Trans., 2009, 7331;
(l) C. J. Kepert, Aust. J. Chem., 2009, 62, 1079; (m) K. S. Murray,
Aust. J. Chem., 2009, 62, 1081; (n) A. B. Koudriavtsev and W. Linert,
J. Struct. Chem., 2010, 51, 335.
15 (a) B. Weber, W. Bauer and J. Obel, Angew. Chem., 2008, 120, 10252
(Angew. Chem., Int. Ed., 2008, 47, 10098–10101); (b) B. Weber,
W. Bauer, T. Pfaffeneder, M. M. Dırtu, A. D. Naik, A. Rotaru and
Y. Garcia, Eur. J. Inorg. Chem., 2011, in press.
16 (a) I. Szafraniak and P. Czarnecki, J. Phys.: Condens. Matter,
2002, 14, 3321; (b) D. Vujosevic, K. Mu1ller and E. Roduner,
J. Phys. Chem. B, 2006, 110, 8598.
17 (a) V. A. Money, J. Elhaik, I. R. Evans, M. A. Halcrow and
J. A. K. Howard, Dalton Trans., 2004, 65–69; (b) B. Weber,
E. S. Kaps, J. Obel, K. Achterhold and F. G. Parak, Inorg. Chem.,
2008, 47, 10779.
c
7154 Chem. Commun., 2011, 47, 7152–7154
This journal is The Royal Society of Chemistry 2011