ORGANIC
LETTERS
2011
Vol. 13, No. 16
4284–4287
Thermally Induced Cycloadditions of
Donor/Acceptor Carbenes
Stephanie R. Ovalles, Jørn H. Hansen, and Huw M. L. Davies*
Emory University, Department of Chemistry, 1515 Dickey Drive, Atlanta, Georgia
30322, United States
Received June 16, 2011
ABSTRACT
The thermal decomposition of aryldiazoacetates and aryldiazoketones in the absence of a catalyst leads to synthetically useful transformations.
The thermal reaction of aryldiazoacetates with alkenes generates cyclopropanes in 68ꢀ97%yieldandwith good diastereoselectivity(upto19:1dr) when
the aryl substituent is electron-rich. The thermal reaction of aryldiazoketones with alkenes generated cyclobutanones in 71ꢀ94% yield and with
good diastereocontrol (g9:1 dr).
Diazo compounds are widely used precursors for the
generation ofcarbene intermediatesunder metal catalysis.1
They can undergo a variety of useful synthetic transforma-
tions such as cyclopropanation,2 CꢀH insertion,3 and
ylide formation.4 A concern, however, with the use of
diazo compounds is their thermal instability, although
large-scale reactions have been reported.5 We and others
have conducted extensive studies on the metal-catalyzed
reactions of aryldiazoacetates.6 These reactions generate a
class of intermediates, called donor/acceptor carbenoids,
that are more selective than the traditional carbenoids
lacking the donor group.6b This paper describes that,
opposite to conventional wisdom, metal-free, thermal
reactions of aryldiazo esters and aryldiazo ketones are also
capable of highly selective transformations.
The most widely used catalysts for the reactions of
donor/acceptor carbenoids have been dirhodium com-
plexes.7 Although these catalysts are extremely active,5a,8
several other metals have been developed as catalysts for
(1) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic
Methods for Organic Synthesis with Diazo Compounds: From Cyclopro-
panes to Ylides; John Wiley & Sons, Inc.: New York, 1998.
(2) (a) Davies, H. M. L.; Antoulinakis, E. G. Org. Reacts. 2001, 57,
1–326. (b) Maas, G. Chem. Soc. Rev. 2004, 33, 183.
(3) (a) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103,
2861. (b) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev.
2010, 110, 704.
(7) (a) Hansen, J.; Davies, H. M. L. Coord. Chem. Rev. 2008, 252, 545.
(b) Doyle, M. P. J. Org. Chem. 2006, 71, 9253.
(8) Davies, H. M. L.; Bruzinski, P. R.; Lake, D. H.; Kong, N.; Fall,
M. J. J. Am. Chem. Soc. 1996, 118, 6897.
(4) (a) Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223.
(b) Padwa, A.; Hornbuckle, S. F. Chem. Rev. 1991, 91, 263.
(5) (a) Huang, Y.; Zhang, W.; Zhang, P.; Liu, X. Ind. Eng. Chem. Res.
2010, 49, 12164. (b) Simpson, J. H.; Godfrey, J.; Fox, R.; Kotnis,
A.; Kacsur, D.; Hamm, J.; Totelben, M.; Rosso, V.; Mueller, R.;
Delaney, E.; Deshpande, R. P. Tetrahedron: Asymmetry 2003, 14, 3569.
(c) Saltzmann, T. N.; Ratcliffe, R. W.; Christensen, B. G.; Bouffard,
F. A. J. Am. Chem. Soc. 1980, 102, 6161.
(9) (a) Morilla, M. E.; Diaz-Requejo, M. M.; Belderrain, T. R.;
Nicasio, M. C.; Trofimenko, S.; Perez, P. J. Chem. Commun. 2002,
2998. (b) Yang, M. M.; Wang, X.; Livant, P. J. Org. Chem. 2001, 66,
6729. (c) Mbuvi, H. M.; Klobukowski, E. R.; Roberts, G. M.; Woo,
L. K. J. Porphyr. Phthalocyanines 2010, 14, 284. (d) Del Zotto, A.;
Baratta, W.; Rigo, P. J. Chem. Soc., Perkin Trans. 1 1999, 3079.
(e) Galardon, E.; LeMaux, P.; Simonneaux, G. J. Chem. Soc., Perkin
Trans. 1 1997, 2455. (f) Baumann, L. K.; Mbuvi, H. M.; Du, G.; Woo,
L. K. Organometallics 2007, 26, 3995. (g) Mbuvi, H. M.; Woo, L. K.
Organometallics 2008, 27, 637.
(6) (a) Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577. (b) Hansen,
J.; Autschbach, J.; Davies, H. M. L. J. Org. Chem. 2009, 74, 6555.
r
10.1021/ol201628d
Published on Web 07/18/2011
2011 American Chemical Society