Journal of the American Chemical Society
ARTICLE
R01-GM57034) and Dainippon Sumitomo Pharma Co., Ltd.
(fellowship for Y.F.). We thank Dr. Jonathan E. Wilson for a
preliminary study.
(13) For an application of Ph-BPE as a chiral nucleophilic catalyst, see:
Tan, B.; Candeias, N. R.; Barbas, C. F., III. J. Am. Chem. Soc. 2011, 133,
4672–4675.
(14) For an application of TangPhos as a chiral nucleophilic
catalyst, see: Sun, J.; Fu, G. C. J. Am. Chem. Soc. 2010, 132, 4568–4569.
(15) (a) For the initial report of the use of this family of phosphe-
pines in asymmetric nucleophilic catalysis, see: Wurz, R. P.; Fu, G. C.
J. Am. Chem. Soc. 2005, 127, 12234–12235. (b) Such phosphepines were
originally developed as chiral ligands for transition-metal catalyzed
reactions. For an overview, see: Gladiali, S.; Alberico, E. In Phosphorus
Ligands in Asymmetric Catalysis; B€orner, A., Ed.; WileyꢀVCH: New York,
2008; Vol. 1, pp 177ꢀ206.
’ REFERENCES
(1) For some leading references to nucleophilic catalysis by phos-
phines, see: (a) Ye, L.-W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008,
37, 1140–1152. (b) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004,
346, 1035–1050.
(2) (a) For reviews of asymmetric catalysis by chiral phosphines, see:
Marinetti, A.; Voituriez, A. Synlett 2010, 174ꢀ194. Gr€oger, H.; Burda,
E. In Phosphorus Ligands in Asymmetric Catalysis; B€orner, A., Ed.;
WileyꢀVCH: New York, 2008; Vol. 3, pp 1175ꢀ1197. (b) For an overview
of catalytic enantioselective reactions of allenoates, see: Cowen, B. J.;
Miller, S. J. Chem. Soc. Rev. 2009, 38, 3102–3116.
(16) For example, see: (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe,
K. Angew. Chem., Int. Ed. 2004, 43, 1566–1568. (b) Uraguchi, D.;
Terada, M. J. Am. Chem. Soc. 2004, 126, 5356–5357.
(17) Similar results are observed when chloroform is employed
as the solvent and when the allene bears an isopropyl, rather than an
ethyl, ester.
(3) (a) Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906–2908. (b) Lu,
X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535–544.
(18) Phosphepine 1 can be handled conveniently in the air. After
exposure of the solid phosphine to air for two months, no phosphine
oxide was detected by 31P NMR spectroscopy. On the other hand,
phosphepine 1 is susceptible to slow oxidation in solution (e.g., after
exposure of a solution in CDCl3 to air for 3 days, 15% of the phosphine
had been converted into the phosphine oxide).
(19) For phosphine-catalyzed isomerization reactions to form 1,3-
dienes, see: (a) Trost, B. M.; Kazmaier, U. J. Am. Chem. Soc. 1992,
114, 7933–7935. (b) Kwong, C. K.-W.; Fu, M. Y.; Lam, C. S.-L.; Toy,
P. H. Synthesis 2008, 2307–2317.
(4) Prostaglandins and furanoid carbasugars are two examples of
bioactive compounds that contain five-membered carbocycles. For some
leading references, see: (a) Prostaglandins, Leukotrienes and Essential
Fatty Acids; Bazinet, R. P., Ed. (b) Rassu, G.; Auzzas, L.; Pinna, L.;
Battistini, L.; Curti, C. Stud. Nat. Prod. Chem. 2003, 29, 449–520.
(5) Zhu, G.; Chen, Z.; Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. J. Am.
Chem. Soc. 1997, 119, 3836–3837.
(6) Wilson, J. E.; Fu, G. C. Angew. Chem., Int. Ed. 2006, 45, 1426–
1429.
(7) (a) Wallace, D. J.; Sidda, R. L.; Reamer, R. A. J. Org. Chem. 2007,
72, 1051–1054. (b) Cowen, B. J.; Miller, S. J. J. Am. Chem. Soc. 2007,
129, 10988–10989. (c) Voituriez, A.; Panossian, A.; Fleury-Bregeot, N.;
Retailleau, P.; Marinetti, A. J. Am. Chem. Soc. 2008, 130, 14030–14031.
(d) Panossian, A.; Fleury-Brꢀegeot, N.; Marinetti, A. Eur. J. Org. Chem.
2008, 3826–3833. (e) Voituriez, A.; Panossian, A.; Fleury-Brꢀegeot, N.;
Retailleau, P.; Marinetti, A. Adv. Synth. Catal. 2009, 351, 1968–1976.
(f) Sampath, M.; Loh, T.-P. Chem. Commun. 2009, 1568–1570.
(g) Sampath, M.; Loh, T.-P. Chem. Sci. 2010, 1, 739–742. (h) Pinto,
N.; Neel, M.; Panossian, A.; Retailleau, P.; Frison, G.; Voituriez, A.;
Marinetti, A. Chem.—Eur. J. 2010, 16, 1033–1045. (i) Voituriez, A.;
Pinto, N.; Neel, M.; Retailleau, P.; Marinetti, A. Chem.—Eur. J. 2010,
16, 12541–12544. (j) Xiao, H.; Chai, Z.; Zheng, C.-W.; Yang, Y.-Q.; Liu,
W.; Zhang, J.-K.; Zhao, G. Angew. Chem., Int. Ed. 2010, 49, 4467–4470.
(k) Schuler, M.; Voituriez, A.; Marinetti, A. Tetrahedron: Asymmetry
2010, 21, 1569–1573. (l) Han, X.; Wang, Y.; Zhong, F.; Lu, Y. J. Am.
Chem. Soc. 2011, 133, 1726–1729. (m) Pinto, N.; Retailleau, P.;
Voituriez, A.; Marinetti, A. Chem. Commun. 2011, 1015–1017.
(8) Nitrogen-substituted olefins: (a) Pyne, S. G.; Schafer, K.; Skelton,
B. W.; White, A. H. Chem. Commun. 1997, 2267–2268. (b) Ung, A. T.;
Schafer, K.; Lindsay, K. B.; Pyne, S. G.; Amornraksa, K.; Wouters, R.;
Van der Linden, I.; Biesmans, I.; Lesage, A. S. J.; Skelton, B. W.; White,
A. H. J. Org. Chem. 2002, 67, 227–233. (c) Pham, T. Q.; Pyne, S. G.;
Skelton, B. W.; White, A. H. Tetrahedron Lett. 2002, 43, 5953–5956.
(d) Du, Y.; Lu, X.; Yu, Y. J. Org. Chem. 2002, 67, 8901–8905. (e) Pham,
T. Q.; Pyne, S. G.; Skelton, B. W.; White, A. H. J. Org. Chem. 2005, 70,
6369–6377. (f) Henry, C. E.; Kwon, O. Org. Lett. 2007, 9, 3069–3072.
(g) Guan, X.-Y.; Wei, Y.; Shi, M. Org. Lett. 2010, 12, 5024–5027.
(9) Sulfur-substituted olefins: (a) Ruano, J. L. G.; Nunez, A., Jr;
Martin, M. R.; Fraile, A. J. Org. Chem. 2008, 73, 9366–9371. (b) Nunez,
A., Jr; Martin, M. R.; Fraile, A.; Ruano, J. L. G. Chem.—Eur. J. 2010,
16, 5443–5453.
(20) For isolated examples of catalytic asymmetric [3 + 2] cyclo-
additions of olefins with γ-substituted allenes that are prone to isomerize,
see refs 7b,g,j. In each case, the only substituent that was investigated was
a γ-methyl group.
(21) Notes: (a) Under our standard reaction conditions: if the
temperature of the reaction is lowered, there is a substantial decrease
in rate and only a small improvement in ee; the cycloaddition proceeds
more slowly in the presence of protic additives such as pivalic acid or
phenol; on a gram scale, the reaction illustrated in entry 3 of Table 2
proceeds in 92% ee and 99% yield (1.74 g of product; 17:1 regio-
selectivity); the ee of the product is constant throughout the cyclo-
addition; the phosphine oxide of phosphepine 1 does not catalyze the
reaction; the addition of water (up to 5 equiv) leads to a decrease in yield
(∼20%), but no erosion in enantioselectivity. (b) Allenoates can be
generated in one step via the treatment of an acid chloride with a
commercially available olefinating agent such as (carbethoxymethylene)-
triphenylphosphorane.
(22) We do not currently have a satisfactory understanding of the
origin of the observed stereoselection, particularly with respect to the
new stereocenter that is derived from the olefin.
(23) For a review of the utility of Weinreb amides, see: Balasubramaniam,
S.; Aidhen, I. S. Synthesis 2008, 3707–3738.
(24) For a review and leading references on the stereoselective
synthesis and the utility of cyclic quaternary R-amino acids, see:
Cativiela, C.; Ordonez, M. Tetrahedron: Asymmetry 2009, 20, 1–63.
(25) For mechanistic studies of phosphine-catalyzed [3 + 2] cyclo-
additions of allenes with olefins, see: (a) Non-asymmetric: Xia, Y.; Liang,
Y.; Chen, Y.; Wang, M.; Jiao, L.; Huang, F.; Liu, S.; Li, Y.; Yu, Z.-X. J. Am.
Chem. Soc. 2007, 129, 3470–3471. Liang, Y.; Liu, S.; Xia, Y.; Li, Y.; Yu, Z.-
X. Chem.—Eur. J. 2008, 14, 4361–4373. Mercier, E.; Fonovic, B.; Henry,
C.; Kwon, O.; Dudding, T. Tetrahedron Lett. 2007, 48, 3617–3620.
Zhang, X.-C.; Cao, S.-H.; Wei, Y.; Shi, M. Chem. Commun. 2011,
47, 1548–1550. (b) Asymmetric (model for stereoselection): ref 7h.
(10) For an example of a process that generates a tertiary sulfur-
substituted stereocenter in low ee (<35%), see: Pakulski, Z.; Demchuk,
O. M.; Frelek, J.; Luboradzki, R.; Pietrusiewicz, K. M. Eur. J. Org. Chem.
2004, 3913–3918.
(11) For leading references, see: Quaternary Stereocenters: Challenges
and Solutions for Organic Synthesis; Christoffers, J., Baro, A., Eds.;
WileyꢀVCH: New York, 2005.
(12) Phosphorus Ligands in Asymmetric Catalysis; B€orner, A., Ed.;
WileyꢀVCH: New York, 2008.
12297
dx.doi.org/10.1021/ja2049012 |J. Am. Chem. Soc. 2011, 133, 12293–12297