Medicinally Important Heterocycles
H, OCH2CH3), 1.12 (d, J = 6.8 Hz, 3 H, CHCH3) ppm. 13C NMR tific and Industrial Research (CSIR) (New Delhi) for a research
(CDCl3, DEPT-135): δ = 154.0 (C, N-C=O), 132.8 (C), 132.0 (CH), fellowship.
129.0 (C), 128.4 (C), 127.2 (CH), 125.8 (CH), 125.7 (CH), 123.3
(CH), 62.2 (CH2, OCH2CH3), 48.9 (CH), 18.5 (CH3), 14.5 (CH3,
OCH2CH3) ppm. MS: m/z = 252.25 [M + H+]. C13H14ClNO2
(251.07): calcd. C 62.03, H 5.61, N 5.56; found C 62.13, H 5.58, N
5 . 6 5 . H R M S : m / z = 2 7 4 . 0 6 1 1 [ M + N a ] , c a l c d . f o r
C13H14ClNO2Na 274.0611.
[1] a) H. Ogawa, H. Yamashita, K. Kondo, Y. Yamamura, H. Mi-
yamoto, K. Kan, K. Kitano, M. Tanaka, K. Nakaya, S. Nama-
mura, T. Mori, M. Tominaga, Y. Yabuuchi, J. Med. Chem.
1996, 39, 3547–3555; b) X. Wang, V. Gattone II, P. C. Harris,
V. E. Torres, J. Am. Soc. Nephrol. 2005, 16, 846–851; c) P. Spi-
teller, Chem. Eur. J. 2008, 14, 9100–9110; d) Y. C. Hwang, J. J.
Chu, P. L. Yang, W. Chen, M. V. Yates, Antiviral Res. 2008, 77,
232–236; e) R. J. Pagliero, S. Lusvarghi, A. B. Pierini, R. Brun,
M. R. Mazzieri, Bioorg. Med. Chem. 2010, 18, 142–150.
[2] For the sequential one-pot reactions, see: a) D. B. Ramachary,
M. Kishor, J. Org. Chem. 2007, 72, 5056–5068; b) D. B. Rama-
chary, K. Ramakumar, V. V. Narayana, J. Org. Chem. 2007, 72,
1458–1463; c) D. B. Ramachary, M. Kishor, Y. V. Reddy, Eur.
J. Org. Chem. 2008, 975–998; d) D. B. Ramachary, M. Kishor,
Org. Biomol. Chem. 2008, 6, 4176–4187; e) D. B. Ramachary,
Y. V. Re d d y, J. Org. Chem. 2010, 75, 74–85; f) D. B. Ramachary,
S. Jain, Org. Biomol. Chem. 2011, 9, 1277–1300.
[3] For review articles on RCM reactions, see: a) S. K. Chatto-
padhyay, S. Karmakar, T. Biswas, K. C. Majumdar, H. Rah-
man, B. Roy, Tetrahedron 2007, 63, 3919–3952; b) A. Michaut,
J. Rodriguez, Angew. Chem. Int. Ed. 2006, 45, 5740–5750; c) A.
Gradillas, J. Perez-Castells, Angew. Chem. Int. Ed. 2006, 45,
6086–6101; d) A. Deiters, S. F. Martin, Chem. Rev. 2004, 104,
2199–2238; e) M. D. McReynolds, J. M. Dougherty, P. R. Han-
son, Chem. Rev. 2004, 104, 2239–2258; f) A. Furstner, Angew.
Chem. Int. Ed. 2000, 39, 3012–3043; g) T. M. Trnka, R. H.
Grubbs, Acc. Chem. Res. 2001, 34, 18–29.
Ethyl 2-Chloro-6-(5-chloro-2-ethoxycarbonylaminophenyl)-7-methyl-
6a,7,8,10a-tetrahydro-6H-phenanthridine-5-carboxylate (5aa): Pre-
pared by following procedure G, method B, and purified by column
chromatography using EtOAc/hexane and isolated as a solid. IR
(neat): ν
= 1726 (N–C=O), 1682 (N–C=O), 1481, 1401, 1221,
˜
max
1053, 739 cm–1. 1H NMR (CDCl3): δ = 9.26 (s, 1 H, N-H), 7.69
(br. d, J = 5.2 Hz, 1 H), 7.33 (d, J = 2.0 Hz, 1 H), 7.26 (dd, J =
8.8, 2.4 Hz, 1 H), 7.21 (dd, J = 8.8, 2.4 Hz, 1 H), 7.10 (d, J =
8.4 Hz, 1 H), 6.46 (d, J = 2.4 Hz, 1 H), 6.14 (br. d, J = 10.4 Hz, 1
H, olefinic-H), 6.03–5.99 (m, 1 H, olefinic-H), 5.32 (d, J = 10.4 Hz,
1 H, NCH), 4.30 (q, J = 7.2 Hz, 2 H, OCH2CH3), 4.26–4.13 (m, 2
H, OCH2CH3), 3.15 (d, J = 10.0 Hz, 1 H), 2.15–2.09 (m, 1 H),
2.05–1.95 (m, 1 H), 1.77–1.65 (m, 2 H), 1.38 (t, J = 7.2 Hz, 3 H,
OCH2CH3), 1.23 (t, J = 7.2 Hz, 3 H, OCH2CH3), 0.61 (d, J =
6.4 Hz, 3 H, CHCH3) ppm. 13C NMR (CDCl3, DEPT-135): δ =
155.8 (C, N-C=O), 154.6 (C, N-C=O), 139.4 (2ϫ C), 136.3 (CH),
134.7 (C), 134.6 (C), 131.6 (C), 130.0 (CH), 129.4 (C), 128.2 (CH),
127.4 (CH), 127.1 (CH), 126.5 (CH), 123.4 (2ϫ CH), 62.8 (CH2,
OCH2CH3), 61.2 (CH2, OCH2CH3), 56.7 (CH), 54.4 (CH), 39.1
(CH), 34.9 (CH2), 34.5 (CH), 18.8 (CH3), 14.7 (CH3, OCH2CH3),
14.3 (CH3, OCH2CH3) ppm. MS: m/z = 503.30 [M + H+].
C26H28Cl2N2O4 (502.14): calcd. C 62.03, H 5.61, N 5.56; found C
62.18, H 5.67, N 5.46. HRMS: m/z = 525.1323 [M + Na], calcd.
for C26H28Cl2N2O4Na 525.1324.
[4] CCDC-798519 (for 3ac) and -798520 (for 5aa) contain the sup-
plementary crystallographic data for this paper. These data can
be obtained free of charge from The Cambridge Crystallo-
graphic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
See the Supporting Information for crystal structures.
N-[2-(5-Acetyl-2-chloro-7-methyl-5,6,6a,7,8,10a-hexahydrophen-
anthridin-6-yl)-4-chlorophenyl]acetamide (5ad): Prepared by follow-
ing procedure G, method B, and purified by column chromatog-
[5] For recent reviews on applications of catalytic hydroamination,
see: a) T. E. Muller, K. C. Hultzsch, M. Yus, F. Foubelo, M.
Tada, Chem. Rev. 2008, 108, 3795–3892; b) K. C. Hultzsch,
Adv. Synth. Catal. 2005, 347, 367–391; c) K. C. Hultzsch, D. V.
Gribkov, F. Hampel, J. Organomet. Chem. 2005, 690, 4441–
4452; d) S. Hong, T. J. Marks, Acc. Chem. Res. 2004, 37, 673–
686; e) F. Pohlki, S. Doye, Chem. Soc. Rev. 2003, 32, 104–114;
f) I. Bytschkov, S. Doye, Eur. J. Org. Chem. 2003, 6, 935–946;
g) T. E. Muller, M. Beller, Chem. Rev. 1998, 98, 675–703.
[6] a) M. R. Gagné, C. L. Stern, T. J. Marks, J. Am. Chem. Soc.
1992, 114, 275–294; b) M. R. Gagné, S. P. Nolan, T. Marks, J.
Organometallics 1990, 9, 1716–1718; c) M. R. Gagné, T. J.
Marks, J. Am. Chem. Soc. 1989, 111, 4108–4109.
[7] For recent reviews on gold catalysis, see: a) A. S. K. Hashmi,
Chem. Rev. 2007, 107, 3180–3211; b) D. J. Gorin, F. D. Toste,
Nature 2007, 446, 395–403; c) Z. Li, C. Brouwer, C. He, Chem.
Rev. 2008, 108, 3239–3265; d) D. Gorin, B. Sherry, F. D. Toste,
Chem. Rev. 2008, 108, 3351–3378; for selected examples of
gold-catalyzed hydroamination reactions, see: e) J. Zhang, C.-
G. Yang, C. He, J. Am. Chem. Soc. 2006, 128, 1798–1799; f)
R. L. LaLonde, B. D. Sherry, E. J. Kang, F. D. Toste, J. Am.
Chem. Soc. 2007, 129, 2452–2453; g) X. Han, R. A. Widenho-
efer, Angew. Chem. Int. Ed. 2006, 45, 1747–1749; h) C. F.
Bender, R. A. Widenhoefer, Chem. Commun. 2008, 2741–2743;
i) E. Mizushima, T. Hayashi, M. Tanaka, Org. Lett. 2003, 5,
3349–3352.
raphy using EtOAc/hexane and isolated as a solid. IR (neat): ν
˜
max
= 2917, 1692 (N–C=O), 1637, 1603, 1482, 1298, 1038, 737 cm–1.
1H NMR (CDCl3): δ = 10.38 (s, 1 H, N-H), 7.82 (d, J = 8.8 Hz, 1
H), 7.39 (d, J = 1.6 Hz, 1 H), 7.31 (dd, J = 8.8, 2.4 Hz, 1 H), 7.20
(dd, J = 8.8, 2.4 Hz, 1 H), 6.92 (d, J = 8.0 Hz, 1 H), 6.34 (d, J =
2.0 Hz, 1 H), 6.13 (d, J = 8.8 Hz, 1 H, olefinic-H), 6.03–5.99 (m, 1
H, olefinic-H), 5.57 (d, J = 8.4 Hz, 1 H, NCH), 3.09 (d, J =
10.8 Hz, 1 H), 2.32 (s, 3 H, COCH3), 2.16–2.08 (m, 1 H), 2.08 (s,
3 H, COCH3), 1.97–1.94 (m, 1 H), 1.76–1.65 (m, 2 H), 0.59 (d, J
= 6.4 Hz, 3 H, CHCH3) ppm. 13C NMR (CDCl3, DEPT-135): δ =
171.0 (C, N-C=O), 168.9 (C, N-C=O), 140.8 (C), 135.5 (C), 135.0
(C), 134.6 (C), 133.4 (C), 130.5 (CH), 129.6 (C), 128.3 (CH), 127.3
(CH), 127.1 (CH), 127.0 (CH), 126.4 (CH), 124.2 (CH), 122.9
(CH), 55.7 (CH), 53.8 (CH), 39.2 (CH), 34.8 (CH2), 34.6 (CH),
24.3 (CH3, COCH3), 22.4 (CH3, COCH3), 19.0 (CH3) ppm. MS:
m/z = 443.35 [M + H+]. C24H24Cl2N2O2 (442.12): calcd. C 65.02,
H 5.46, N 6.32; found C 65.12, H 5.51, N 6.23. HRMS: m/z =
465.1112 [M + Na], calcd. for C24H24Cl2N2O2Na 465.1113.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, synthesis of starting materials, X-
ray crystal structures, and analytical data for all new compounds.
[8] For selected examples of gold-catalyzed [4+2] cycloaddition re-
actions, see: a) T.-M. Teng, A. Das, D. B. Huple, R.-S. Liu, J.
Am. Chem. Soc. 2010, 132, 12565–12567; b) J. Barluenga, J.
Calleja, A. Mendoza, F. Rodriguez, F. J. Fananas, Chem. Eur.
J. 2010, 16, 7110–7112; c) P. Mauleon, R. M. Zeldin, A. Z.
Gonzalez, F. D. Toste, J. Am. Chem. Soc. 2009, 131, 6348–6349;
d) I. Alonso, B. Trillo, F. López, S. Montserrat, G. Ujaque, L.
Castedo, A. Lledós, J. L. Mascareñas, J. Am. Chem. Soc. 2009,
Acknowledgments
We thank the Department of Science and Technology (DST) (New
Delhi) for financial support. V. V. N. thanks the Council of Scien-
Eur. J. Org. Chem. 2011, 3514–3522
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
3521